Evaluation of Game Level Design Using Machine Learning

submitted by
Azeem Ahmed Khan
for the degree of Doctor of Engineering
of the
University of Bath
Department of Computer Science

September 2021

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.

This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author \qquad

Azeem Ahmed Khan

Abstract

Game level designers need to know whether the levels they generate will fulfil the desires of their audience. The main goal of the work presented in this thesis is to build a tool which can assist a level designer as they work, providing them with real-time evaluation by predicting how much enjoyment their design will bring about in prospective players. This tool is built via the application of data mining and machine learning algorithms to gameplay, level geometry and feedback data. Telemetry data from playthroughs of the medieval action game For Honor is collected. This data includes player positions and actions, as well as information about the level geometry surrounding the players. The feedback submitted at the end of each match is also gathered. Feature representation is then used to express these playthroughs as a series of moments. We explore two distinct methods of interpreting the influence of these moments on the given rating: 1. Using Weakly Supervised Learning to identify the single most influential moment within each playthrough. 2. Building an ensemble of probabilistic regressors so the influence of all moments are taken into account.

The moments and their corresponding ratings are fed into a neural network which takes geometry as input and outputs some metric representing the predicted rating. The trained model evaluates a game level by visualising the feedback in the form of a "heat map of enjoyment", highlighting the areas of the level that will lead to high or low amounts of enjoyment. The accuracies of these heat maps are assessed by comparing them to coloured maps produced by users who participated in a study. Our results show that both methods produce heat maps which are in good agreement with the user maps for at least one user. However the outputs of method 2 are less susceptible to noise and, unlike method 1 , did not suffer from overfitting during the training process.

Acknowledgements

This thesis would not have been possible without the help of many people. To my parents, thank you so much for supporting me throughout my education.
I would like to express my gratitude to my academic supervisor Dr Tom Fincham Haines for his patience and clarity when explaining complex concepts, as well as his guidance throughout the entire project. I would also like to thank the University of Bath and the Centre for Digital Entertainment for providing me the opportunity to do this course. Many thanks are given to my supervisors at Ubisoft Reflections as well as others who oversaw the project: Michael "Mike" Troughton, Michele Condò, Mark Leadbeater, Dario Sancho, Gilles Matouba and Jose Parades. I would especially like to express my gratitude to Mike for granting me the opportunity to undertake research at a company whose games I used to play as a child; his invaluable help in directing me to the relevant people and resources within the company, and encouraging me to participate in Ubisoft's internal events to present my work. I also cannot thank Michele enough for his support and enthusiasm for the project, as well as his influence in starting my career at Ubisoft Reflections.
I want to thank Vincent Gagnon and his team at Ubisoft Montréal for granting us access to their data and materials, without which our research could not have been accomplished.
Special thanks to the people who took the time to participate in our user study, your feedback has been extremely useful in justifying our results.
I also appreciate the assistance by Lee Donaldson from IT, who worked hard to set up an extra machine allowing me to gather results much more quickly.

Contents

List of Figures 6
List of Tables 9
List of Acronyms 11
1 Introduction 13
1.1 Background 13
1.2 Research Problem Overview 16
1.3 Aims \& Objectives 17
1.4 Industrial Context 18
1.5 Research Outputs 18
1.6 Document Roadmap 18
2 Literature Review 21
2.1 Modelling Player Experience 21
2.1.1 Qualitative Approaches 21
2.1.2 Quantitative Approaches 28
2.2 Evaluating Levels - the Sentient Sketchbook 38
2.3 Weakly Supervised Learning 44
3 Experimental Design 50
3.1 The Game 50
3.1.1 Requirements 50
3.1.2 Description 51
3.2 Data Collection 52
3.2.1 Playthroughs 53
3.2.2 User Feedback 56
4 Methodology 59
4.1 Feature Representation 61
4.1.1 Player Motion 62
4.1.2 Local Geometry 63
4.1.3 Zero-meaning \& Clustering 65
4.1.4 Player Actions \& Clustering 68
4.2 Moment Detection - Weakly Supervised Learning 69
4.2.1 Multiple Instance Learning 69
4.2.2 Model Training 71
4.2.3 Predicting Playthrough Feedback 72
4.3 Moment Detection - Probabilistic Regression Ensemble 73
4.3.1 Further Clustering 74
4.3.2 Cluster Voting for Predicting Playthrough Feedback 76
4.3.3 Model Training for Level Evaluation 77
4.4 Heat Map Generation 79
4.5 Algorithm Performance 81
5 Results and Discussion 85
5.1 Evaluating Maps 85
5.2 Predicting Playthrough Feedback 94
6 Conclusion 98
6.1 Limitations 98
6.2 Extensions. 99
6.3 Impact 100
6.4 Outlook 100
Appendix A - User Study Instructions 111
Appendix B - Summarised User Feedback 112
Appendix C - Genetic Algorithm Implementation 124
Appendix D - Negative Dirichlet Loss 125
Appendix E - Preliminary Map Evaluation Results by Geometry Capture
Metric 126

| Appendix F - Full Results | 129 |
| :--- | :--- | :--- | :--- | :--- | :--- |

List of Figures

1.1 The four key components of the EDPCG framework, adapted from 76 14
1.2 Pipelines for the two methodologies used in the project. 20
2.1 Game interest according to equation (2.7) over the number of online -
learning games for each of the ghost behaviours. Taken from 72 32
2.2 A child playing the bug-smasher game, taken from [73]. 34
2.3 GSR responses against time for specific game events for certain participants.Taken from [37].36
2.4 Graph showing the correlation between normalised GSR and normalisedfun. Taken from [38]. Note: the participants have been ordered accordingto normalised fun, however the lines drawn between the points carry nomeaning.37
2.5 User interface of Sentient Sketchbook. The user draws a sketch on the left,the suggestions are on the right, and the evaluations are in the middle.Taken from 31.38
2.6 Map sketch with the corresponding RTS level. White tiles represent bases,cyan tiles are resources and dark tiles are impassable. Taken from [34]. . . 39
2.7 Map sketch with the corresponding roguelike dungeon level. White tilesrepresent entrances/exits, cyan tiles are enemies and dark tiles are impassable.Taken from [47]. 39

	Sample metrics for a map sketch (a) with S_{M} (stars), S_{N} (triangles) and
impassable tiles (black). The purple star is closer to the blue triangle than	
the red triangle, therefore it has a high safety value. The other stars are	
either equally close to (green star) or equally far away from (brown star)	
both triangles, therefore they have low safety values. For map coverage of	
safe tiles from the red and blue triangles (b), A_{1} is shown in red and A_{2}	
in blue. For map coverage during exploration (c and d), the exploration	
from the red triangle to the blue triangle $E_{1 \rightarrow 2}$ is shown in red, while that	
from the blue to the red $E_{2 \rightarrow 1}$ is shown in blue. Taken from [32.] 42	
2.9	Examples of automated annotation of training data using different MIL
algorithms. Taken from [56]. 44	
2.10 Test data detection precision recall curve, taken from [56]. AP = Average	
Precision. Cross data results as published in [9]. 45	
2.11 Initial instances generated for an image to be used in an MIL algorithm,	
taken from 62.] . 47	
2.12 Results using intra-class, negative mining (N), saliency (ϕ) and combined	
negative mining and saliency methods, taken from [55]. 48	
3.1 Screenshot of the game For Honor. Image approved for public use by	
Ubisoft. 51	
3.2	Top-down illustration of a typical player path (black line) through a level,
their estimated orientation at each position (green arrow) and ray-casting	
from one of the positions (red arrowed lines). 54	
3.3 A UV sphere (yellow) at one of the player positions in a playthrough, with	
its corresponding map. Every smaller red sphere represents a point where	
a ray is emitted.	
3.4 Example of a coloured map produced by a user for use as ground truth	
to evaluate the performance of our feedback tool. Areas highlighted in	
green (red) are those the user deemed to be good (bad), while areas left	
uncoloured are considered neutral. 56	
3.5 Overview of the For Honor maps used in the project, with Dominion	
spawn locations (orange and blue) and capture points (black), taken from	
[23].] . 58	
4.1	Graph showing percentage of playthroughs for each rating which resulted
	in a win/loss. 59

4.3	
the player.	
4.4 Illustration of zero-meaning two x-position sequences in two different	
locations of a 1-D platformer. After zero-meaning, the resultant arrays are	
identical, allowing the PCA algorithm to interpret these as two identical	
motions . 66	
4.5 Results of PCA (a) and applying different clustering algorithms to them	
(b-d). The distribution of the points is centered on (0,0) due to zero-meaning	
and possibly a high frequency of occurrences of the players standing still.	
The apparent drifting of points to the right is likely due to the presence	
of bounties in the data, as these are always equal to or greater than zero.	
4.7 The 2-fold PCA and clustering method used for processing the data. In	
this example $\kappa_{1}=8$ and $\kappa_{2}=5.5$. 68	
4.8 Diagram of WSL being carried out on a pair of playthrough sets to extract	
"good" moments (orange), and on another pair to extract "bad" moments	
(blue). The star ratings of the playthroughs in each set is shown on top. . 71	
4.9 Graphical visualisation of optimisation during regression model training	
for WSL method. 72	
4.10 Result of applying PCA to the moment histograms, where each moment	
(datapoint) is colour coded according to the rating of its playthrough.	
4.11 Diagram showing how the PRE method involves taking playthroughs with	
their corresponding ratings (left), applying clustering to their moments	
(middle), resulting in probability distributions over the ratings (right). . . 75	
4.12 Frame from animation of playthroughs in terms of clustered moments	
each point represents a specific type of moment and the lines represent	
the transitions between those moments as the playthrough occurs. The	
colour of the cluster represents its 5-star rating. 75	
4.13 Graphical visualisation of optimisation during regression model training	
for the PRE method. 78	
4.14 Illustration of heat map construction for map evaluation: two random	
paths have been plotted on a mesh, with ray casting at each point hitting	
the closest vertices, and the colouring of the triangles corresponding to	
the predicted feedback of those paths. Green represents positive feedback,	
	red negative, with yellow indicating an even mixture of the two. 79

4.15 An example of a rendered heat map, where the vertices have been colouredaccording to the predicted normalised scores of the random paths plottedwithin their vicinity.80
4.16 Illustration of Jaccard index for bounding boxes in computer vision, taken -
from [49]. An index of greater than 0.5 starts to indicate strong agreement. 81
4.17 The CDF of an algorithmic heat map. 82
4.18 The inverse CDF of a user map. 82
4.19 An example of an algorithmic heat map on Citadel Gate, and the resultant 83heat map from transforming it via the CDF of a given user's map.
4.20 Image masks for the heat map in Figure 4.19 d 84
5.1 Histograms of accuracies, expressed as percentages, for each map across all users (WSL). 87
5.2 Histograms of accuracies, expressed as percentages, for each map across all users (PRE). 88
5.3 Histograms of accuracies, expressed as percentages, for the BMU acrossall maps (WSL).89
5.4 Histograms of accuracies, expressed as percentages, for the BMU acrossall maps (PRE).90
5.5 Histograms of accuracies, expressed as percentages, for the WMU acrossall maps (WSL).91
5.6 Histograms of accuracies, expressed as percentages, for the WMU across 92all maps (PRE).
5.7 Scatter plots of heat map accuracies for all users and their maps underthe optimal hyperparameter configurations, where the users have beenordered by their lowest accuracy, and colour coded according to their rolewithin the industry.93
.13 Heat Map Accuracy Results (method 1). 130
. 14 Heat Map Accuracy Results (method 2). 132
.15 Playthrough Prediction Training Accuracies (Method 1). 134
.16 Playthrough Prediction Test Accuracies (Method 1). 138
.17 Playthrough Prediction Training Accuracies (Method 2 - Multinomial). 142
.18 Playthrough Prediction Test Accuracies (Method 2 - Multinomial). 146
.19 Playthrough Prediction Training Accuracies (Method 2 - Binary). 150
.20 Playthrough Prediction Test Accuracies (Method 2 - Binary). 154

List of Tables

2.1 Analogue concepts in three different qualitative models of player experience. 27
2.2 Metrics used in level evaluation for Sentient Sketchbook, along with what \square
they correspond to in RTS and roguelike dungeon games. 42
3.1 No. of playthroughs associated with each For Honor map. 53
4.1 Results of computing the correlation between player win/loss and the \square
rating given at the end of the match. 61
5.1 Baseline accuracies for training and testing playthrough sets. 94
5.2 Training accuracies for predicting playthroughs using WSL. 95
5.3 Test accuracies for predicting playthroughs using WSL. 95
5.4 Training accuracies for predicting playthroughs using PRE via a multinomialmodel.96
5.5 Test accuracies for predicting playthroughs using PRE via a multinomial96
5.6 Training accuracies for predicting playthroughs using PRE via a binary96
5.7 Test accuracies for predicting playthroughs using PRE via a binary model. 97
1 Map Proximity. 126
2 Nested Spheres. 127
3 Intersection Distance. 127
4 Log-distance. 128

List of Acronyms

2-AFC 2-Alternative Forced Choice.

ANN Artifical Neural Network.

AV Arousal-valence.

BMU Best Matched User.

BOW Bag-of-Words.

BP Blood Pressure.

BSP Binary Space Partitioning.

CDE Centre for Digital Entertainment.
CDF Cumulative Distribution Function.

CET Cognitive Evaluation Theory.
CNN Convolutional Neural Network.

ECG Electrocardiogram.
EDPCG Experience Driven Procedural Content Generation.

EMG Electromyography.

GA Genetic Algorithm.

GSR Galvanic Skin Response.

HCI Human-Computer Interaction.

HMA Heat Map Accuracy.
HR Heart Rate.

IoU Intersection over Union.

MDA Mechanics Dynamics Aesthetics.
MIL Multiple Instance Learning.
NEA2 Niching Evolutionary Algorithm 2.
NNN Negative Nearest Neighbour.
NPC Non-playable Character.

PCA Principal Component Analysis.
PCG Procedural Content Generation.
PEM Player Experience Modeling.
PENS Player Experience of Need Satisfaction.
PRE Probabilistic Regression Ensemble.

RTS Real Time Strategy.

SDT Self-determination Theory.
STIP Spatio-Temporal-Interest-Point.

TCTD Tom Clancy's The Division.

UPEQ Ubisoft Perceived Experience Questionnaire.

VTK Visualization Toolkit.

WMU Worst Matched User.
WSL Weakly Supervised Learning.

Chapter 1

Introduction

The goal of the work presented in this thesis is to build a tool which can assist a level designer as they work, evaluating their creation in real-time by visualising the amount of predicted enjoyment it will elicit in potential players. This is meant to address the problem of subjectivity in game level design; the differing opinions of designers warrant a more neutral source of evaluation. Therefore we apply machine learning to gameplay, level geometry and feedback data. The resultant trained models are used to predict the feedback of a given level, and the accuracy of this prediction is measured by comparing its output to that of human users.

1.1 Background

The video game industry has experienced substantial growth since the release of Pong and Space Invaders in the 1970s. Video games may have experienced their greatest evolution during the 1990s, with the advent of CDs through which software could be stored and distributed, as well as advancements in 3D computer graphics which became the standard for visual representation in games [35]. The 21st century has seen the emergence of independent game development as well as the use of virtual reality and motion capture in video games, bringing them to the same level as films in terms of how they are viewed as a form of entertainment. In fact, games have begun to surpass films as the best-selling media [16]. As games have evolved in terms of graphics and play time, the effort and manpower that goes into their development has constantly increased. It is now more common for a AAA game to be developed by hundreds of people over a period of a year or more, leading to fewer profits [54]. However automation of certain components would substantially shorten development costs - a major motivation for Procedural

Content Generation (PCG). This is defined as "the algorithmic creation of game content with limited or indirect user input" [63]. PCG was used as a solution to the limited space in which content could be stored in early games; a classic example of its use is Rogue, a 1980s dungeon-crawling game in which levels are randomly generated every time a new game starts [54]. PCG can also help level designers be more creative, as algorithms can produce content which is vastly different from that of a human designer. Large game companies such as Ubisoft have benefited from automating content generation, for example the successful launch of Tom Clancy's The Division (TCTD) can be attributed to the creation of a PCG design tool. The key difference to typical PCG technologies is that the play environment was created to satisfy the needs of gameplay, rather than trying to fit gameplay into a procedurally generated world [58].

Figure 1.1: The four key components of the EDPCG framework, adapted from [76].

A more exciting prospect of PCG is that the generated content can be tailored to the desires of the user playing the game. This is known as Experience-driven Procedural Content Generation (EDPCG) and it consists of four key components [76] which are illustrated in Figure 1.1. The top two components will be the main areas covered in this thesis.

1. Player Experience Modelling (PEM) - this can be performed using three different
kinds of extracted data:

- Subjective - this involves the use of interviews or surveys where the questions can be asked during gameplay (free-response) or afterwards (forced-response).
- Objective - here the physiological responses and bodily expressions of the player are monitored and analysed. One can either use existing emotional models derived from emotion theories (model-based), or construct some unknown mapping between player input and emotional state (model-free).
- Gameplay-based - an analysis of the player's in-game actions, either via a general framework of behavioural analysis (model-based) or identifying patterns in the data to predict player intentions (model-free).

2. Evaluating Content Quality - an evaluation function is needed to assess a level and assign a value reflecting its quality or suitably for use in a game. This function is created depending on what a designer wishes to optimise, and falls into one of three classes [64:

- Direct evaluation functions - these directly map extracted features (e.g. number of entry points, firing rate) to a quality value. They can be either data-driven (collecting data and using algorithms to map from content to player experience and then to an evaluation function), or theory-driven (where the designer relies on intuition or some qualitative theory to perform this mapping).
- Simulation-based evaluation functions - this involves allowing an artificial agent to play through the level being evaluated, then extracting features from the agent's performance. These functions can be static (the agent is assumed to not change during the game) or dynamic (the agent changes and the quality value incorporates this change).
- Interactive evaluation functions - in this, the quality value is based on the player-game interaction. Here the quality is evaluated during actual gameplay, and data can be gathered either explicitly (questionnaires or verbal cues) or implicitly (monitoring eye-gaze fixation, facial expressions, time the player quit e.t.c.).

3. Representing Content - the content of a game needs to be represented in a way which improves the efficiency, performance and robustness of a generator. This could be symbolically within a tree or graph data structure. Different representations can be distinguished by how directly or indirectly they are encoded. As an example
one can consider a level in a 2D platform game - this can be directly represented as a 2 D grid where the contents of each cell is specified. A more indirect representation could be a list of positions, shapes, enemies and items. In the case of TCTD, content representation was in the form of a high level script that outlined key aspects of a mission template.
4. Generating Content - the generator needs to search within a resulting search space for content that maximises particular aspects of a player's experience. The more direct the representation, the larger the search space. For TCTD multiple different underground dungeons were generated that satisfied the aforementioned mission template.

EDPCG could be instrumental in closing the affective loop in games - a human-computer interaction (HCI) goal in which an artificial system understands and reacts to a user's emotional state [60].

1.2 Research Problem Overview

It was discussed in the previous section that PEM and content quality evaluation are key parts of the EDPCG framework. The link between these two parts is especially important to level designers; in order for them to have a measure of how enjoyable their levels are and produce successful games, they must be able to know what players enjoy. A game level consists of various elements/artifacts which can be arranged in a number of different ways - this is the game content [51]. However the level is meaningless unless someone actually plays it and has an interactive experience within it. This is ultimately what the level designer cares about when working - the player experience. Unfortunately this presents another challenge - experiences cannot be directly measured, only described. Many level designers will use introspection i.e. use their own experiences as a basis for creating levels; others may decide that only playtesting i.e. the experiences of others can be trusted [53]. Each of these methods has its own flaws: the former only relies on one person's opinions, and some level designers may have unpopular tastes. The latter relies on a process that occurs infrequently during game development, in addition to the fact that there must already be a working game to playtest. In many cases, a designer may be given certain guidelines or criteria to fulfil when tasked with creating levels e.g. create a race track which lasts at least X seconds per lap [39]. However even these can be vague. This is a fundamental problem that exists within level design - it is a subjective discipline because different people will have different views on whether a
level is good or bad \downarrow. The point at which a level is played in relation to others e.g. in an open world game where side missions can be played in almost any order, can also affect a given player's opinion. Additionally a player may not be able to effectively dissect their experience and articulate why they found a particular level fun, therefore providing the level designer with insufficient information about how they could improve the level. Even the concept of "fun" has multiple meanings, making it difficult to fully capture what is happening in terms of keeping the player motivated [51]. For example game designer Marc LeBlanc defined eight types of fun: sense-pleasure, make-believe, drama, obstacle, discovery, self-discovery and expression, social framework and surrender [26]. When a player gives their feedback after experiencing a level, it is based on their personal conception of fun. This feedback potentially links to the structural design of the level, and machine learning could be the key to extracting this relationship.

1.3 Aims \& Objectives

The goal of this project is to create a tool that can provide real-time feedback to a level designer as they work, giving them information as to which areas of the proposed level will result in the most enjoyable experiences for potential players. The system will learn the relationship between level structure and player enjoyment, via the application of machine learning and data mining to existing level playthroughs as training data. This information will also be used to attempt to predict the feedback of playthroughs. The main objectives of the project are as follows:

- Collect data from play sessions and maps of a particular game, most importantly level geometry and player feedback.
- Simplify and convert the data into a suitable representation.
- Identify key moments which most strongly influenced player feedback.
- Train a model which can predict feedback based on level geometry.
- Visualise the predicted feedback in a form helpful to designers.

[^0]
1.4 Industrial Context

The work presented in this thesis is the culmination of a collaboration between Ubisoft Reflections and the Centre for Digital Entertainment (CDE).
Based at the University of Bath and Bournemouth University, the CDE is a doctoral training centre which funds research students in fields such as games, animation and visual effects [10]. These students are usually based at companies requiring these skills on an industrial placement, using concepts they have studied in academia to solve problems within industry.
Ubisoft Reflections is a game development studio based in Newcastle Upon Tyne in the United Kingdom. It is part of Ubisoft, one of the largest video game publishers in the world. The studio has collaborated with other Ubisoft studios around the world to create many AAA games such as Far Cry 5 and Assassin's Creed Syndicate. It is also responsible for the creation of smaller games such as Grow Up and Atomega 65].

1.5 Research Outputs

The following is a list of research outputs of the work presented in this thesis.

Event	Title	Format
CVMP 2018	Evaluating the "fun" Factor of Levels	Poster
CVMP 2019	Data-driven Game Content Evaluation	Poster
CVMP 2020	Evaluating the Content Quality of Game Levels	Poster
LaForge Open House 2021	Evaluating the Content Quality of Levels	 Presentation
UDS 2021	Data-driven Content Evaluation for Level Designers	Presentation

1.6 Document Roadmap

So far this thesis has introduced game content evaluation within the context of EDPCG, and outlined a data-driven method for achieving this. Chapter 2 is a comprehensive literature review concerning the existing research in the fields of PEM and level evaluation, as well as other key concepts involved in the project.
Chapter 3 describes the game which was used for the project and the specific types of data which were collected from it, for both training the system and assessing its
performance.
Chapter 4 goes into detail about the implementation of the algorithms used to complete each objective in the project's pipeline. It begins with feature representation before branching off into two separate methods for selecting the most important features (moment detection), and showing how these are used to train models for PEM and generating visualisations of the model predictions. This also includes the visual outputs of each step. Figure 1.2 illustrates a way in which the two distinct moment detection methods produce two separate pipelines within the project.
Chapter 5 concerns the final results produced by both of the presented methods, specifically an analysis of the system's performance associated with both level evaluation and predicting playthrough feedback.
Chapter 6 concludes the thesis by first summarising what has been achieved, before describing the limitations of the project; how these may have affected the performance, and how these may be overcome. It then proposes potential extensions to the project, and how they may be pursued. Finally the impact and implications that this project has on the field of level design and the game industry as a whole is discussed.

Figure 1.2: Pipelines for the two methodologies used in the project.

Chapter 2

Literature Review

It has been stated that the two components of experience-driven procedural content generation (EDPCG) which will be discussed in this thesis are player experience modelling (PEM) and evaluating content quality. This is because in order to evaluate levels on their enjoyment potential, one must have a way of modelling how the features of those levels translate into player enjoyment. This chapter begins by reviewing the various approaches to PEM over the last several decades. We then discuss the features of an existing level evaluation tool - the Sentient Sketchbook. Finally since one of our approaches uses the machine learning technique known as Weakly Supervised Learning, this concept is introduced and explained using examples of studies in which it has been applied to images and videos.

2.1 Modelling Player Experience

There has been much research into modelling or evaluating the entertainment value of games i.e. identifying what aspects of a game engage the people who play them, and cause them to enjoy the experience. Many of these are rooted in psychological and HCI studies.

2.1.1 Qualitative Approaches

Thomas Malone carried out a series of studies to investigate the features that make games so captivating, and how these features can be used to create environments in which students are motivated to learn as efficiently and effectively as possible. These studies involved surveying the computer game preferences of elementary students, and testing multiple versions of certain games, differing in their focus on specific features.

According to Malone, the characteristics of intrinsically motivating environments fall under one of three categories [36]:

- Challenge - an environment is challenging when it has multiple goals, with uncertain outcomes to keep the player engaged and motivated. Also an environment should have a variable difficulty level so the learner can work at a level appropriate to their ability this also ensures that their self-esteem is not lowered to the point where they are disinterested in the game.
- Curiosity - environments should be novel and surprising, but not completely incomprehensible. This can be divided into two types: sensory curiosity and cognitive curiosity. The former refers to how changes in light, sound or sensory stimuli of an environment attract the attention of the user. The latter refers to presenting the user with just enough information to make their existing knowledge seem incomplete, thus engaging their curiosity and encouraging them to learn more.
- Fantasy - this refers to mental images created by the player as a result of their interaction with the game environment. Fantasies can be both intrinsic and extrinsic, with the intrinsic being more interesting and instructional. A cognitive advantage of intrinsic fantasies is their ability to improve the memorability of the material by provoking vivid images related to it.

The above principles were applied to existing educational tools, turning them into learning games in order to improve their quality and effectiveness [36]. The challenge and curiosity categories were also used as the basis for Yannakakis and Hallam's experiments to derive quantitative models of entertainment, for both computer games [70] and physical games [71]. These are discussed in further detail in Section 2.1.2.

In 2004 Nicole Lazzaro performed a field study in which adults were asked to share their thoughts and feelings while playing their favourite game. This was in order to know more about the role of emotion in games, and mechanisms other than cut scenes which evoke these emotions [29]. To obtain the opinions of non-gamers, the friends and family of the participants were also interviewed. Three types of data were collected: video recordings of players during play sessions, questionnaire responses and emotional cues (such as facial expressions) during gameplay. Lazzaro concluded that what players like about games falls into four "keys of emotion" [29]:

- Player (Internal experience key) - how the game makes them feel inside, as well as changes in their internal state during and after play. This focuses on how the game
aspects create emotions inside the player. The kinds of players which fall under this category said they like clearing their mind by completing the level, avoiding boredom and feeling better about themselves.
- Hard fun (Challenge and strategy key) - people play games to overcome obstacles. The game creates emotion by structuring the experience towards the pursuit of some goal. Players who fell more into this key said they like playing to assess how good they are; playing to beat the game; having multiple objectives and winning through strategy rather than luck.
- Easy fun (Immersion key) - this key focuses on the enjoyment of experiencing the game. Focus is maintained with the player's attention rather than a winning condition. It entices the player to consider their options and investigate more. Players falling into this category said they enjoy exploring new worlds, excitement and adventure, and seeing what happens in the story.
- Other players (Social experience key) - this refers to enjoyment from playing with others inside or outside the game. Some participants admitted that they might play games they don't like in order to spend time with friends. Players to which this key applies see games as mechanisms for social interaction - they say it is the people who are addictive, not the game. They also want an excuse to invite friends over. Even though they don't play games, they enjoy watching others play.

Arriving at these four factors involved observing emotions produced during gameplay via facial gestures, body language and verbal comments [29]. Lazzaro's "fun clustering" was the inspiration for Raph Koster's personal breakdown of player enjoyment [26]. Koster suggested that games are primarily a learning experience; the enjoyment experienced during a game is a result of the brain being taught new and interesting patterns, therefore games focus mostly on hard fun. Our approach investigates the link between enjoyment and the geometry of a level, and hence leans towards the easy fun factor more so than it does towards the others.

The MDA framework defined by Hunicke et al. divides games into three separate components [21]:

- Mechanics - this describes the game in terms of data representation and algorithms, and may include things such as the basic rules of the game and the information that goes into constructing it.
- Dynamics - this describes the way the game actually plays based on the mechanics i.e. the events that occur within the game as experienced by the player.
- Aesthetics - this describes the desirable emotional responses in the player as they interact with the game. Within aesthetics, elements that make the game attractive include sensation (when the player experiences something unfamiliar); fantasy (getting caught up in an imaginary world); narrative (an engaging story); challenge (the need to master something); fellowship (forming and actively taking part in a community); discovery (the player's need to explore); expression (playing to their creativity or leaving their mark) and submission (referring to the game as a pastime) [1. Games possess multiple of these aesthetic elements to various degrees.

The MDA model is very useful for understanding the way games work - it is simplistic but offers a sufficient distinction between various elements of a game, and highlights the ways in which games are systems rather than linear pre-determined structures like books or films. There are limitations to this framework - it does not take into account things like the context in which one plays the game or the culture which frames the game [13]. However from a design perspective, the aesthetic elements have large overlap with procedural content generation (PCG) - some have been explored with PCG while others may provide the basis for new PCG systems [57.

There are many models which have been developed to explain and analyse media enjoyment. Disposition theory relates attitudes toward media characters to moral evaluations of their actions i.e. enjoyment increases when liked characters are successful and disliked characters encounter misfortunes [48. Transportation theory suggests that enjoyment is heightened by immersion in a narrative world, as well as the consequences of this immersion [18. Parasocial interactions refer to the relationship that an audience member develops with a character by talking to them, imagining or discussing their life. Then there is cognition, where viewers make judgments on a character's attributes. Examples of these could be their ethics, interest and intelligence [42]. However these models are individually fairly narrow as they understand enjoyment in terms of one concept. This is where flow theory [11] is advantageous - it is based on the premise that elements of enjoyment are universal, and can be summarised in a general model. The concept of flow originates from research conducted by Csikszentmihalyi into what makes experiences enjoyable. This was based on interviews, questionnaires and other data collected over the course of twelve years with several thousand participants. According
to Csikszentmihalyi, flow consists of eight elements, the combination of which causes a sense of deep enjoyment so rewarding that people feel it is worth expending a great deal of energy to achieve it. Sweetser and Wyeth took this concept and adapted it to computer games, creating the concept of GameFlow 61] which contains the following elements:

- Concentration - games should provide stimuli from different sources, grab the player's attention and maintain their focus.
- Challenge - games should provide challenges which match the player's skill level, as well as increasing in difficulty to improve the player's skill level at an appropriate pace.
- Player Skills - players should be able to play the game without reading the manual, instead being taught through tutorials, as well has having access to online help. Also the interfaces and mechanics should be easy to use.
- Control - players should feel a sense of control over their actions within the game, as well as feeling that their actions are having a significant impact in the game.
- Clear goals - games should provide the player with clear goals at appropriate times.
- Feedback - players should receive feedback on their progress, actions and score.
- Immersion - players should become less aware of their real-world surroundings, as well as becoming emotionally invested in the game and experiencing an altered sense of time.
- Social Interaction - games should support cooperation between players and social communities inside and outside the game.

In order to validate the GameFlow elements and their criteria, two fantasy games (Warcraft 3 and Everquest) were evaluated and compared using expert review. This was also performed to identify any potential weaknesses or ambiguities in the model. The games were given a score for each criterion, and these were averaged for each element. The results were consistent with professional ratings of the games, however it was acknowledged that some criteria were not applicable to them, or were difficult to measure without further evaluation e.g playtesting. Given that only two games were evaluated in this study, the versatility of the model is still unclear. The authors also
concluded that the GameFlow criteria could be used as guidelines for expert reviews or playtesting, but are not suitable for use by game developers as an evaluation tool 61].

Another model for predicting fun/enjoyment is the Player Experience of Need Satisfaction (PENS) model [50]. Developed by Scott Rigby and Richard Ryan, its roots lie in more than thirty years of research into human motivation and psychological health, and seven years of research on games [51]. More specifically it was elaborated from Self-determination Theory (SDT) - a theory of motivation that concerns intrinsic and extrinsic motives for acting, as well as the relationship between motivation and growth/well-being [52]. A mini-theory of this which is only concerned with intrinsic motivation, known as Cognitive Evaluation Theory (CET), was applied to video games. Therefore the model is based on the idea that games satisfy specific psychological needs that exist in potential players; these satisfactions provide the games' pull. According to PENS, video games are most successful, engaging and fun when they satisfy the following intrinsic needs:

- Competence - this refers to the innate desire to grow abilities and gain mastery of new situations and challenges.
- Autonomy - this reflects one's inherent desire to take action out of personal volition and not because one is "controlled" by circumstances.
- Relatedness - this refers to the need to have a meaningful connection to others.

In order to investigate the relations between these needs and game characteristics, several studies were carried out in which participants were asked to play a game (or multiple games) and then answer a questionnaire which used a uniform 7-point Lickert-type scale [52]. The questions themselves were designed to assess how much the players felt that the above intrinsic needs were satisfied, for example "I felt very capable and effective" or "I felt controlled and pressured to be a certain way". These items were averaged to produce an in-game score corresponding to each intrinsic need. The scores associated with game variables such as presence (a measure of immersion) and game enjoyment were regressed on to in-game autonomy and competence simultaneously. The results showed that some variables were significantly associated with both autonomy and competence, whereas others only related to one or the other. For relatedness, similar studies were performed using multiplayer games [52].

It is interesting to note the large amount of overlap between the concepts presented
in Lazzaro's fun factors, GameFlow and PENS - this is summarised in Table 2.1. For example there is always an element allowing players to improve their skills - this corresponds to hard fun, challenge and competence in these respective models. Also the GameFlow concept of control is extremely similar to autonomy in PENS as they both emphasise the idea of the player choosing their own actions that they believe will impact the game significantly. This may also be loosely connected to the player factor in Lazzaro's model, as the player may feel satisfied knowing it was their choices that led to successful completion of the game. The social aspect of games i.e. interacting with other players cooperatively or competitively is also consistently present throughout all of these models. Finally the GameFlow concept of immersion finds its analogues in Lazzaro's easy fun and the presence variable in PENS.

Lazzaro's factors	GameFlow	PENS
Player	Control	Autonomy
Hard fun	Challenge	Competence
Easy fun	Immersion	Presence
Other players	Social interaction	Relatedness

Table 2.1: Analogue concepts in three different qualitative models of player experience.

SDT was used as the basis for a model of motivation defined by Melhart et al. 41 in cooperation with Ubisoft Massive. Gameplay data was collected from more than 400 players of Tom Clancy's The Division, along with their reported levels of competence, autonomy, relatedness and presence using the Ubisoft Perceived Experience Questionnaire (UPEQ). Four different player types were produced via k-means clustering. Preference learning was then used to derive a mapping between these player types and UPEQ responses, then between gameplay and UPEQ responses. Models derived from the latter mapping proved to be more accurate and robust than those of the former. Our approach also utilises k-means clustering, and Melhart's use of it to derive specific player types could potentially improve our system - this is discussed in further detail in Section 6.2 .

Guckelsberger et al. [19] carried out an exploratory study based on empowerment - a quantity which measures an agent's influence on its environment, as well as its ability to perceive this influence afterwards. They proposed that empowerment was also linked to the concepts of autonomy and relatedness in CET. Their study was motivated by the challenge of evoking specific player experiences in levels created via PCG. The
authors aimed to automatically predict player experience using computational models of intrinsic motivation, without including a human in the loop. Levels of an infinite runner game RoboRunner were procedurally generated and their predicted experiences were computed using a simulation-based approach. Then several human participants were asked to play these levels, think aloud during gameplay and answer questions afterwards. Their commentary and responses were analysed and used to identify the following themes which are also found in existing PEM theories: challenge, involvement, learning, emotion, attention and engagement.

Outside of collaboration between academia and industry, the qualitative concepts mentioned in this section have been used by video game companies in their guidelines for level design. For example Ubisoft states that designers build fun experiences by perfecting the following three pillars [4]:

- Guidance - teaching how the game plays and ensuring the player understands their objectives.
- Challenge - constantly testing the player's skills.
- Immersion - drawing the player into the game.

Designers may adapt these concepts in a way which aligns most with the genre of the game on which they are working - in the case of race tracks, the designer may focus on ensuring new players experience speed, momentum and drama [39].

2.1.2 Quantitative Approaches

The first attempt at a quantitative study of fun was the work of Iida et al. [22] concerning entertainment metrics of boardgames. They proposed the following estimate of measure of entertainment E for a given game G :

$$
\begin{equation*}
E(G)=\frac{D}{b} \tag{2.1}
\end{equation*}
$$

where D is the length of the game and b is the average number of plausible moves for the player. This estimate assumes that a player would make their decision with probability $\frac{1}{b}$ at each position. They also assume that there is a direct relation between b and the player's strength s :

$$
\begin{equation*}
b=B^{\frac{1}{s}} \tag{2.2}
\end{equation*}
$$

where B is the average number of possible moves. An omniscient player would select the most optimal moves at any position, whereas a novice would usually be unable to distinguish between good and bad moves i.e. all possible moves are plausible moves. Therefore equation (2.1) can be re-written as

$$
\begin{equation*}
E(G)=D B^{-\frac{1}{s}} . \tag{2.3}
\end{equation*}
$$

This formula was used to investigate the evolution of chess variants. However since no grandmaster games for old chess variants were available, self-play experiments were introduced. Each game was played between two identical copies of a computer program. For each experiment, 1000-2000 games were played to gather data on B and average D. It was concluded that the evolutionary change of rules in chess variants took at least two paths - increase in search-space complexity and increase in entertaining impact. Modern chess is the result of natural selection while being well-balanced in both of these cases [22].

Iida's measure is disadvantageous in that it uses concepts which have no equivalent in modern computer games. Lankveld et al. introduced the concept of incongruity from psychological literature as a measure of entertainment value in computer games [27. Incongruity is defined as the difference between game complexity (difficulty of the game environment) and mental complexity (a reflection of the player's understanding of the game environment). Lankveld et al. assumed that interest is maximised when a game is well-balanced - by adapting the game complexity to the mental complexity of the player so that incongruity is constant, the player should continually experience interest. This was inspired by the concept of flow [11] mentioned in Section 2.1.1] They developed a side-scrolling arcade game in which enemies can deal damage to the player, but defeating these enemies will allow the player to gain health. During gameplay the amount of damage dealt to the player by each enemy was measured - this was taken to be a measure of the complexity of each enemy. The environmental complexity was defined as the total of these individual complexities. The mental complexity was measured by keeping a score of the player's progress and their sustained damage. Incongruity was said to be at a balanced level if the player maintains no more than just enough health to be able to complete the game. Lankveld et al. assumed that with this balanced setting, the player is encouraged to learn and increase their mental complexity to meet the demands of the game's complexity. However no experiments were performed to validate the study's hypotheses [27].

Yannakakis and Hallam [68, 69, 72] carried out studies in which they measured the entertainment of predator-prey games e.g. Pac-Man. They based their studies on the hypothesis that entertainment is mainly dependent on player-opponent interaction, rather than audiovisual features and game narrative or genre. Their main goal was to derive a quantifiable metric for entertainment by first quantifying the criteria that define interest in any predator-prey game, before combining these into a single formula. The criteria are:

1. An appropriate level of challenge i.e. when the game is neither too easy nor too hard.
2. Behaviour diversity i.e. when the NPCs are able to hunt and kill the player in different ways.
3. Spatial diversity i.e. when predators move constantly all over the game world and cover it uniformly. This gives the player the impression of an intelligent opponent.

To quantify these criteria, Yannakakis and Hallam let the examined group of opponents (the Ghosts in the case of Pac-Man) play the game N times. Each game was played for a sufficiently large evaluation period of $t_{\max }$ simulation steps. They recorded the number of steps t_{k} taken to kill the player, as well as the total number of opponents' visits $v_{i k}$ at each cell i of the game field grid for each game k. For continuous game motion, the grid was created by discretising the game field up to the character's size. The metric for the first criterion is as follows:

$$
\begin{equation*}
T=\left(1-\frac{E\left\{t_{k}\right\}}{\max \left\{t_{k}\right\}}\right)^{p_{1}} \tag{2.4}
\end{equation*}
$$

where $E\left\{t_{k}\right\}$ is the average number of simulation steps taken to kill the player over the N games; $\max \left\{t_{k}\right\}$ is the maximum t_{k} over the N games and p_{1} is a weighting parameter. p_{1} is selected to be less than 1 in order to give a boost to T when there is even a slight difference between $E\left\{t_{k}\right\}$ and $\max \left\{t_{k}\right\}$

The quantification of the second criterion is given by S, which promotes predators that produce high diversity in the time taken to kill the player:

$$
\begin{equation*}
S=\left(\frac{\sigma}{\sigma_{\max }}\right)^{p_{2}} \tag{2.5}
\end{equation*}
$$

where

$$
\sigma_{\max }=\frac{1}{2} \sqrt{\frac{N}{N-1}}\left(t_{\max }-t_{\min }\right) ;
$$

σ is the standard deviation of t_{k} over the N games; $t_{\text {min }}$ is the minimum number of steps required to kill the player and p_{2} is a weighting parameter which is set so that σ has a linear effect on S.
The third criterion is quantified through the entropy H_{n} of the predator's cell visits in a game n - this quantifies the completeness and uniformity with which the opponents cover the environment. Therefore for each game, the entropy is calculated and rescaled by the following:

$$
\begin{equation*}
H_{n}=\left[-\frac{1}{\log V_{n}} \sum_{i} \frac{v_{i n}}{V_{n}} \log \left(\frac{v_{i n}}{V_{n}}\right)\right]^{p_{3}}, \tag{2.6}
\end{equation*}
$$

where $V_{n}=\sum_{i} v_{\text {in }}$ is the total number of visits of all visited cells and p_{3} is a weighting parameter which is set greater than 1 to promote high H_{n} values.
These three metrics can be combined to form one metric I which is the interest value of a predator/prey game:

$$
\begin{equation*}
I=\frac{\gamma T+\delta S+\epsilon E\left\{H_{n}\right\}}{\gamma+\delta+\epsilon} \tag{2.7}
\end{equation*}
$$

where $E\left\{H_{n}\right\}$ is the average value of H_{n} over the N games and γ, δ and ϵ are criterion weight parameters [68, 69, 72]. These parameters are manually selected based on the specific game, and adjusted so that I increases as the opponent behaviour changes from random to near-optimal.
Experiments were performed in order to optimise entertainment in predator/prey games. The Ghosts in a Pac-Man game were trained to learn and adapt to new playing strategies. This involved the use of a neuro-evolution offline learning mechanism to produce emergent behaviour in the Ghosts as they played against three different Pac-Man types. These Pac-Man players were computer-controlled and the player types/strategies were:

- Cost-based (CB) - the Pac-Man moves along a cost minimisation path but only in the local neighbour cell area.
- Rule-based (RB) - this is the same as CB but with an additional rule to improve pellet-eating behaviour.
- Advanced (ADV) - this generates a more global Ghost-avoidance behaviour built upon the RB Pac-Man's pellet-eating strategy.

The generated Ghost behaviours from these simulations were:

- Blocking (B) - these Ghosts tend to wait for Pac-Man to enter a specific area that is easy for them to block and then kill.
- Aggressive (A) - this kind of behaviour involves following Pac-Man all over the stage in order to kill it.
- Hybrid (H) - these Ghosts are referred to as such because they tend to behave as a hybrid between B and A.

An online learning procedure was then applied in order to evolve the interest of these games, the results of which can be found in Figure 2.1. The results show that the learning mechanisms were able to produce games of higher interest than their original versions, as well as maintaining this high level of interest for a long period of time.

Figure 2.1: Game interest according to equation (2.7) over the number of online learning games for each of the ghost behaviours. Taken from [72.

In order to verify whether the interest value derived in equation (2.7) is consistent with actual interest derived from human judgement, a survey was conducted in which human subjects were used as Pac-Man players. Five opponents whose interest values varied uniformly across the $[0,1]$ space were selected and each subject played sets of games (five game per set) against three of these selected opponents. Each time a pair of sets was completed, the player was asked which of the two sets was more interesting. This approach, known as 2-alternative forced choice (2 -AFC), is advantageous because it minimises assumptions about people's different notions of entertainment [74, 71]. Measuring the agreement between equation (2.7) and the human judgement of interest involved calculating the Kendall rank correlation coefficients [72]

$$
\begin{equation*}
c(\vec{z})=\sum_{i=1}^{N} \frac{z_{i}}{N}, \tag{2.8}
\end{equation*}
$$

where N is the number of incidents to correlate and

$$
\vec{z}=\left\{\begin{array}{l}
1, \text { if subject agrees with } 2.7 ; \\
-1, \text { if subject disagrees with } \\
2.7
\end{array} .\right.
$$

The binomial distribution was used for obtaining the correlation coefficient probabilities (also known as p-values $P(C \geq c)$). For reference, the observed effect is "highly significant" if $P(C \geq c)<1 \%$; "significant" if $1 \%<P(C \geq c) \leq 5 \%$. The total agreement coefficient ($c=0.3888$) and its p-value $\left(P(C \geq c)=1.31 \times 10^{-7}\right)$ showed that a human player's notion of interest correlates strongly with that of equation (2.7). However there were some mismatches which indicated that the behaviour of a human player is different to that of a computer-controlled player. Also it was demonstrated that subjects which disagreed with equation (2.7) judge interest by their score or other personal criteria such as game control and graphics [72].

A similar series of experiments [44, 45, 46] to the one discussed above were carried out on a platformer, in order to build a quantitative model of player experience for this genre of games. The test-bed platformer was Infinite Mario Bros, a version of the classic Super Mario Bros with the additional feature of automatically generated random levels. The purpose of building this model was to form the basis of experience-driven PCG in platformers.

The work of Yannakakis et al. [68, 69, 72, 74, 71] is the quantification of Malone's
concepts [36] discussed in Section 2.1.1. Specifically their work on the Playware Playground [74, 71] was an attempt to introduce quantitative measures for the challenge and curiosity entertainment factors. This consisted of a set of 6×6 tiles on which twenty eight children were asked to play a Bug-Smasher game (see Figure 2.2) - the goal is to step on as many lighted tiles as possible. In order to increase the fantasy factor, different sounds and colours represented different bugs on appearance and smashing. Each subject played two out of eight selected game states in all permutations of pairs, each game differing in one or more of the levels of entertainment factors, before being asked which of the two was more interesting (the 2-AFC approach). The answers to these questions were used to guide the training of an artificial neural network (ANN) model of entertainment. The solutions emerging from this approach successfully mapped correlations between entertainment, challenge and curiosity, and these correlations appeared to follow the principles of Malone's qualitative studies. Also regarding player response time, the results showed that fast responding children show a preference for low challenge and low curiosity games; slow responding children preferred games of high challenge and low curiosity [75].

Figure 2.2: A child playing the bug-smasher game, taken from 73].

Another study was carried out involving the Playware game platform, however this time the subject's heart rate (HR) was recorded as well as their judgement of entertainment. This was motivated by lack of research into the effect of entertainment on a player's
physiological state [71, 73]. The HR data was gathered via a wireless Electrocardiogram (ECG) device placed on the child's chest. In order to identify the features of the HR dynamics that correlate with entertainment, several statistical parameters were computed, including average HR, HR signal variance, maximum and minimum HR and the difference between them. Also three different regression models (linear, quadratic and exponential) were used to fit the HR signal. The obtained results indicated that average HR was the only feature strongly correlated with player satisfaction [73]. This study is an example of a model-free approach to PEM, where the type of data gathered is objective (see Section 1.1).

Physiological approaches to modeling a user's emotional state and experience were carried out by Mandryk et al. in [37] and [38], respectively. In [37], several participants were asked to play a sports game (NHL 2003) under three conditions: against a computer, co-located friend and co-located stranger. The following physiological signals were measured:

- Galvanic Skin Response (GSR) - this is a measure of the conductance ${ }^{\text {D }}$ of the skin; it is affected by specific sweat glands located in the palms of the hands and soles of the feet, which respond to psychological stimulation. This was measured using surface electrodes sewn in Velcro straps placed around two fingers on the same hand.
- Cardiovascular activity - HR, interbeat interval, HR variability, blood pressure (BP) and BP variability were all measured using an ECG. Three pre-gelled surface electrodes were placed on the subject's body - two on the chest and one on the abdomen.
- Electromyography (EMG) - this measures muscle activity by detecting surface voltages that occur during muscle contraction. EMG from smiling (EMG smiling) and frowning $\left(E M G_{\text {frowning }}\right)$ activity were collected via surface electrodes placed on the specific muscles associated with these activities.

These signals were normalised and used as inputs for a fuzzy logic model which was used to transform them into arousal-valence (AV) space. A second fuzzy model was then used to convert AV into five emotions: fun, challenge, boredom, frustration and excitement. The results indicated that high HR and GSR leads to high levels of AV, which in turn correspond to fun and excitement [37].

[^1]In order to investigate whether physiological measures can be used to objectively measure a player's experience with entertainment technology, a similar set of experiments was carried out in which respiration rate of the participants was measured in addition to the four signals mentioned earlier [38]. In the first experiment, subjects played a sports game in four conditions of difficulty: beginner, easy, medium and difficult. In the second, the conditions were against a co-located player and against a computer. As well as physiological data, subjective data was also collected in the form of pre and post-experiment questionnaires - after playing each condition, participants were asked to rate the experience on a five-point scale in terms of the five emotional states mentioned in the previous study. In experiment 1 , it was reported that subjects who lost to the computer rated the condition as significantly more boring than those who beat it. Regarding experiment 2, all subjects reported that they found playing against a friend more enjoyable than playing against a computer - this was clearly reflected in the GSR responses (Figure 2.3). Because of this, it was hypothesised that a correlation may exist between GSR and one of the emotional states. Using Pearson's correlation coefficient r, it was found that normalised GSR was correlated with normalised fun, with a coefficient value of $r=0.7$ and a p-value of $p=0.026$ (Figure 2.4).

(a) Participant 2 scoring a goal.

(b) Participant 9 engaging in a hockey fight.

Figure 2.3: GSR responses against time for specific game events for certain participants. Taken from [37].

Figure 2.4: Graph showing the correlation between normalised GSR and normalised fun. Taken from [38]. Note: the participants have been ordered according to normalised fun, however the lines drawn between the points carry no meaning.

When one considers the use of human participants, neural networks and the aim of building a model which produces a quantity representing the entertainment value of a game; the quantitative studies involving Pac-Man and the Playware Playground have the largest overlap with our work than any of the other existing PEM literature. However one major difference is their derivation of formulae with the inclusion of arbitrary parameters - while we carry this out for predicting playthrough feedback, this is not the method we employ for quantifying the enjoyment value for game levels. Instead we map features from the players' gameplay to a quantity.

2.2 Evaluating Levels - the Sentient Sketchbook

Figure 2.5: User interface of Sentient Sketchbook. The user draws a sketch on the left, the suggestions are on the right, and the evaluations are in the middle. Taken from [31].

The Sentient Sketchbook [33] is a tool which gives feedback in the form of metrics and suggested improvements, in order to assist designers in the creation of game levels. This is achieved via a computer-aided sketching interface, shown in Figure 2.5. The motivation for its creation was the fact that the various models discussed in section 2.1.2 cannot be applied to content outside their domain. Reaching a domain-independent framework requires devising more general functions that abstract away from game-specific features towards more high-level concepts, while retaining their applicability to a particular game. This involved the use of game design patterns [7]. Originally introduced in 2004, they describe part of the interaction possible in a game. The patterns which translate well to level design are:

- Control - giving access to otherwise unavailable actions and making the use of tactics and actions easier. It encompasses both area control and resource control.
- Exploration - the goal of learning the layout of the world.
- Symmetry - ensuring players have equal opportunities and instantiating team balance.

Figure 2.6: Map sketch with the corresponding RTS level. White tiles represent bases, cyan tiles are resources and dark tiles are impassable. Taken from [34].

Figure 2.7: Map sketch with the corresponding roguelike dungeon level. White tiles represent entrances/exits, cyan tiles are enemies and dark tiles are impassable. Taken from [47].

Quantifiable metrics [32] based on these patterns were used to evaluate abstractions of the game levels known as map sketches (see Figures 2.6 and 2.7). A map sketch consists of a grid layout with empty tiles (allow movement), impassable tiles (block movement)
and special domain-dependent tiles (e.g. bases, spawn-points and traps). Area control and exploration require a set of two or more reference tiles $\left(S_{N}\right)$ - these have a special purpose in-game e.g. player bases in RTS games. For control measures, a group of tiles can be "owned" by a reference tile if that reference tile is closer to those tiles than the other reference tiles. This is reflected in the safety of a tile t to a reference tile i, which is given by:

$$
\begin{equation*}
s_{t, i}\left(S_{N}\right)=\min _{\substack{1 \leq j \leq N \\ j \neq i}}\left\{\max \left\{0, \frac{d_{t, j}-d_{t, i}}{d_{t, j}+d_{t, i}}\right\}\right\} \tag{2.9}
\end{equation*}
$$

where $d_{t, i}$ is the distance from tile t to element $i . s_{t, i}>0$ for the closest reference tile i, while $s_{t, i}=0$ for the remaining i (see Figure 2.8 (a) for an illustration of safety).
The exploration required from reference tile i to all other reference tiles is:

$$
\begin{equation*}
E_{i}\left(S_{N}\right)=\frac{1}{N-1} \sum_{j=1}^{N} \frac{E_{i \rightarrow j}}{P} \tag{2.10}
\end{equation*}
$$

where $E_{i \rightarrow j}$ is the map coverage when a four-direction flood fill algorithm is applied starting from i and stopping once j has been found (see Figure 2.8. P is the number of passable tiles in the map. E_{i} is high when a large part of the map must be covered in order to discover one reference tile when starting from another reference tile. For resource control, a definition of the tiles representing strategic resources is required - these are known as target tiles $\left(S_{M}\right)$. Finally to ensure that reference tiles are symmetric in terms of control and exploration, evaluations of balance are introduced. This gives rise to a total of six objective functions used to evaluate levels in the Sentient Sketchbook: strategic resource control $\left(f_{s}\right)$, area control $\left(f_{a}\right)$, exploration $\left(f_{e}\right)$, strategic resource control balance $\left(b_{s}\right)$, area control balance $\left(b_{a}\right)$ and exploration balance $\left(b_{e}\right)$;
their mathematical formulations are:

$$
\begin{align*}
f_{s}\left(S_{N}, S_{M}\right) & =\frac{1}{M} \sum_{k=1}^{M} \max _{1 \leq i \leq N}\left\{s_{k, i}\right\} \\
f_{a}\left(S_{N}\right) & =\frac{1}{P} \sum_{i=1}^{N} A_{i} \\
f_{e}\left(S_{N}\right) & =\frac{1}{N} \sum_{i=1}^{N} E_{i} \\
b_{s}\left(S_{N}, S_{M}\right) & =1-\frac{1}{M N(N-1)} \sum_{k=1}^{M} \sum_{i=1}^{N} \sum_{\substack{j=1 \\
j \neq i}}^{N}\left|s_{k, i}-s_{k, j}\right| \tag{2.11}\\
b_{a}\left(S_{N}\right) & =1-\frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{\substack{j=1 \\
j \neq i}} \frac{\left|A_{i}-A_{j}\right|}{\max \left\{A_{i}, A_{j}\right\}} \\
b_{e}\left(S_{N}\right) & =1-\frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{\substack{j=1 \\
j \neq i}} \frac{\left|E_{i}-E_{j}\right|}{\max \left\{E_{i}, E_{j}\right\}},
\end{align*}
$$

where A_{i} is the map coverage of safe tiles for element i (see Figure 2.8(b)).
Map sketches are optimised towards the above measures of quality via artificial evolution, and are encoded in a way which reduces representational biases and does not hinder optimisation [32].
The evaluation method of Sentient Sketchbook was demonstrated on a multiplayer RTS and a singleplayer roguelike dungeon game. Table 2.2 shows what some of the evaluation metrics correspond to in each of these genres.
When suggesting alternative map sketches, there is a minimal criteria for playability all special tiles must be connected to each other via a passable path. This was secured through a Feasible-Infeasible two-population genetic algorithm (GA).

Figure 2.8: Sample metrics for a map sketch (a) with S_{M} (stars), S_{N} (triangles) and impassable tiles (black). The purple star is closer to the blue triangle than the red triangle, therefore it has a high safety value. The other stars are either equally close to (green star) or equally far away from (brown star) both triangles, therefore they have low safety values. For map coverage of safe tiles from the red and blue triangles (b), A_{1} is shown in red and A_{2} in blue. For map coverage during exploration (c and d), the exploration from the red triangle to the blue triangle $E_{1 \rightarrow 2}$ is shown in red, while that from the blue to the red $E_{2 \rightarrow 1}$ is shown in blue. Taken from [32].

Metric	RTS	Roguelike Dungeon
Strategic resource control	Easy access to resources.	Placement of treasures close to monsters.
Area control	Area control around bases.	Distribution of enemies.
Exploration	Discovery of enemy bases.	Winding path from entrance to exit.

Table 2.2: Metrics used in level evaluation for Sentient Sketchbook, along with what they correspond to in RTS and roguelike dungeon games.

As well as quality, diversity is also important when generating suggestions for game levels. Therefore several search-based approaches [47] were compared in their ability to produce good and diverse content. Similar to "fun", the definition of diversity within the context of level design is also subjective. In [47], three different measures of diversity for map sketches are used:

- Tile-based diversity - the number of tiles that differ from one map sketch to another.
- Objective-based diversity - this is measured in terms of the metrics in equation (2.11).
- Visual impression diversity - measured along metrics related to balance or grouping, which are used to extract visual features of maps.

Four optimisation algorithms were used in the study, and the domain was limited to map sketches for RTS games only. All of the algorithms are effective at producing the desired content, provided that appropriate distance measures are used. More specifically novelty search is able to create diverse individuals, however their quality is not as high as those produced from niching evolutionary algorithm 2 (NEA2) [47.

2.3 Weakly Supervised Learning

(a) Handwaving.

(b) Boxing.

(c) Clapping.

Figure 2.9: Examples of automated annotation of training data using different MIL algorithms. Taken from [56].

Weakly supervised learning (WSL) [78] is a machine learning task in which all of the elements in the training data set are "weakly labelled" i.e. when the training labels provide less information than what the algorithm outputs at runtime. As an example, consider object detection in images, where the desired output is a bounding box around the object of interest. A weak supervision approach would involve each training image being annotated with a label indicating whether the image contains the object of interest or not. This is different to a fully supervised approach, in which the training images would already include ground truth bounding boxes. The motivation for WSL is that manually annotating all of the elements with ground truth labels incurs high cost [78]. This is why it is a potentially valuable technique for evaluating game levels; giving a single overall rating for a level is less time-consuming than rating individual areas of
that level. As another example WSL has also been applied to microscopy images of cells to better understand the relationships between different drug treatments [8].
There are several types of weak supervision [78]. However in this thesis, only those involving a multiple instance learning (MIL) problem will be discussed [3]. In MIL each element in the training set is represented as a bag containing a set of feature vectors, known as instances. A bag is labelled either positive if it contains at least one positive instance (one with the desired information), and negative if it contains no such instances. Therefore, while the label of the bag is known, the individual labels of the instances that conform the bag are unknown. When carrying out MIL for classification, one can be thought of as asking the question: "What am I seeing in these positive bags that I am not seeing in these negative bags?". Classic MIL uses two types of information to train a classifier:

- Intra-class - this focuses on the similarities between the positive instances.
- Inter-class - this focuses on the differences between the positive and negative instances.

Figure 2.10: Test data detection precision recall curve, taken from [56]. AP $=$ Average Precision. Cross data results as published in [9].

An example of the use of MIL for action detection in videos is the approach taken by Siva and Xiang [56], where their goal was to train a classifier which could detect and identify a specific action taking place in a video. In this problem, the MSR2 training data set consists of a set of positive videos containing at least one action of interest, and negative videos containing no actions of interest. An action is represented by a spatio-temporal cuboid/volume in the video, also known as an action cuboid. Each action cuboid is described by a bag-of-words (BOW) histogram containing 2000 bins derived from Spatio-Temporal-Interest-Point (STIP) features [28]. 100000 randomly selected STIPS from the dataset are clustered into 2000 code words via k-means clustering. Since
a typical video instance contains approximately 10^{9} action cuboids, MIL would be intractable. Therefore the number of feasible instances needs to be limited. First an initial set of instances C^{\prime} is created using a person detector run on every F th frame. These are then ranked based on STIP density and temporal spread and the first M cuboids from this ranked list are selected, giving the following sets:

$$
\begin{align*}
& C_{i}^{+}=\left\{C_{i 1}^{+}, C_{i 2}^{+}, \ldots, C_{i M}^{+}\right\} \tag{2.12}\\
& C_{i}^{-}=\left\{C_{i 1}^{-}, C_{i 2}^{-}, \ldots, C_{i M}^{-}\right\},
\end{align*}
$$

where $i=1,2, \ldots, N^{ \pm}$is the number of positive/negative videos. The goal is to select a set $G^{*}=\left\{c_{1}, c_{2}, \ldots, c_{N^{+}}\right\}$containing one instance from each positive video such that each instance is the action of interest. The following cost function is minimised:

$$
\begin{equation*}
G^{*}=\operatorname{argmin} \sum_{c_{j} \in G}\left[D\left(c_{j}, G_{-j}, k_{p}\right)+\left(1-D\left(c_{j}, C_{i=1, \ldots, N^{-}}^{-}, k_{n}\right)\right)\right], \tag{2.13}
\end{equation*}
$$

where $G=\left\{c_{1}, c_{2}, \ldots, c_{N^{+}}\right\}$is a set composed of one instance from each positive bag and G_{-j} is G excluding $c_{j} . D(c, M, k)$ is the distance from the instance c to the set of instances M with constant parameter $k_{x}(x=p$ for positive and $x=n$ for negative) [56]. The first term in equation (2.13) aims to minimise intra-class distance and the second term aims to maximise inter-class distance. Solving equation (2.13) is achieved using a genetic algorithm - this involves a population of random candidate solutions evolving through reproduction and random mutation towards an optimal solution $G *$. Given $G *$ and a set of negative videos, a support vector machine (SVM) is then trained as an action cuboid classifier. Figure 2.10 features precision recall curves (PRCs) [77] comparing the detection performance of the weakly supervised detector with that of a fully supervised detector. On handwaving, it can be seen that using WSL achieves a higher average precision. However (as stated by the authors) this can be attributed to biases in the manual annotations - in some videos the ground truth bounding boxes do not encompass the entire extent of the hand motion (see Figure 2.9a), and therefore do not include all of the useful STIPs. For boxing and clapping, the weakly supervised detector achieved similar and worst performance compared to the fully supervised detector, respectively. However in the latter case the weakly supervised detector was still able to achieve over 50% of the precision of the fully supervised detector [56]. The authors suggest that the relatively poor performance of the clapping detection is due to the clapping class having fewer training samples, as well as the highly symmetric nature of clapping.

The above approach provides the main inspiration for our use of WSL in game levels to identify the most significant enjoyable moments.

Figure 2.11: Initial instances generated for an image to be used in an MIL algorithm, taken from 62].

Another method by Siva and Xiang [55], with the goal of object detection in images, avoids using intra-class information. This technique is referred to as negative mining, as it uses inter-class information and another piece of information known as saliency. In this problem, the bags are the images and the instances are randomly generated rectangles which act as bounding boxes within the images (Figure 2.11). Each rectangle is given an "objectness" score reflecting the likelihood of it containing an object (not necessarily the object of interest). This measure of objectness was presented by Alexe et al. [2], and is based on four types of image cues combined in a Bayesian framework. A set number of the rectangles (e.g. the top 100) are then selected based on their objectness scores - these are the initial instances. Each instance is represented by a BOW histogram, whose bins are derived from the clustering of feature vectors extracted from the images [12]. Saliency refers to the knowledge about the size and location of the object in the photo - it is used to prune the space of possible locations a priori [2], and works on the assumption that the images were taken by a human. Negative mining is a viable option here due to the fact that the PASCAL VOC 2007 data set was used. In this data set, a typical class has around 300 positive images I_{i}^{+}and 4700 negative images $I_{i}^{-} .100$ candidate instances $x_{i, j=1,2, \ldots 100}$ are generated using a saliency measure, giving 470000 negative instances vs 300 objects located somewhere in 30000 images. This results in an
intra-class distance based on less than 300 unlabelled similar positive vs an inter-class distance based on 470000 strongly labelled negative instances. Clearly one can gain substantially more information from the latter, hence the sole use of inter-class. The goal is to select a single instance x_{i}^{+}from each I_{i}^{+}corresponding to the location of the object - negative mining does this by selecting the instance that maximises the distance to the nearest neighbour in any image containing only negative instances $x_{i, j}^{-}$, reflected in the following cost function [55]:

$$
\begin{equation*}
x_{i}^{+}=\operatorname{argmax}_{x_{i, j}^{+}}\left\|x_{i, j}^{+}-N\left(x_{i, j}^{+}\right)\right\|_{1}, \tag{2.14}
\end{equation*}
$$

where $\|\ldots\|_{1}$ is the L_{1} norm and $N\left(x_{i, j}^{+}\right)$is the negative nearest neighbour (NNN) of $x_{i, j}^{+}$, which is determined using a kd-tree based approximate nearest neighbour algorithm. If there is a saliency measure ϕ which serves as a prior of how likely an instance is to be positive, this can be added to equation (2.14), giving

$$
\begin{equation*}
x_{i}^{+}=\operatorname{argmax}_{x_{i, j}^{+}}\left[\left\|x_{i, j}^{+}-N\left(x_{i, j}^{+}\right)\right\|_{1}+\phi\left(x_{i, j}^{+}\right)\right] . \tag{2.15}
\end{equation*}
$$

Figure 2.12 shows the results of various classifiers - it is clear that the combined negative mining and saliency method gives the best performance. The fact that this method relies on the abundance of known negative instances means no intra-class optimisation is necessary, leading to increased computational efficiency. It was also observed that using normalised histograms results in greater NNN distance for small instances than that for large instances; unnormalised histograms lead to a bias towards large instances. Using root-normalised histograms minimises the bias towards either size [55].
While negative mining proves to be a successful and efficient technique for object detection in images, it is not used in our WSL implementation due to limitations in the gameplay data.

Figure 2.12: Results using intra-class, negative mining (N), saliency (ϕ) and combined negative mining and saliency methods, taken from [55].

The PASCAL VOC 2007 data set was also used for training in the MIL approach
taken by Song et al. [59] for object detection. Their approach differs from that of Siva and Xiang [55] in that intra-class information is used in addition to inter-class instead of relying entirely on negative mining and saliency. The initial instances are selected based on the search technique by Uijlings et al. 66] as opposed to the earlier mentioned objectness measure [2]. Positive instances are selected using a discriminative submodular cover algorithm and the MIL objective is optimised using a latent SVM with Nesterov smoothing [43]. This technique results in a 50% relative improvement in average precision over Siva and Xiang's approach. The authors also note that they use a different evaluation metric to report their results on the test set 59].

The WSL techniques discussed in this section all involved the training of SVMs; in our approach neural networks are trained instead. Additionally instead of initially selecting random instances of varying sizes, the sizes of our instances are equal across all playthroughs. Therefore biases towards instances of a particular size are not a concern.

Chapter 3

Experimental Design

The fundamental thing required for any machine learning task is training data. In this chapter we will discuss the game whose data was harvested for our approach, as well as the types of data which were gathered. This includes the data for both training the system and assessing its performance.

3.1 The Game

3.1.1 Requirements

The game needs to fulfil certain criteria, mainly it must have appropriate analytics. The goal of this research is to assist level designers, therefore the analytics must contain information about the player's interaction with their surroundings. Also these surroundings must be relevant to the gameplay. Therefore we require a game for which it is possible to gather behavioural data i.e. the actions of players, as well as regular updates of their locations within the level. Also because our system is intended to predict player enjoyment, we need a game containing features that allow players to signal their enjoyment (or lack thereof). Ubisoft gathers and stores analytics about most of its games. Using this pre-existing telemetry data is ideal as this project requires a large data set. While the types of available data would be confined within the scope of what is tracked by Ubisoft, creating/modifying a game and releasing it to players purely for the purposes of data collection is very time-consuming. Additionally while other forms of data e.g. physiology may be useful, this requires organising controlled play sessions which participants may find invasive - this has the potential of introducing biases into the data.

Several Ubisoft titles were considered and investigated for their suitability. The collaborative culture that exists across Ubisoft studios means that we do not have to limit ourselves
to games developed solely by Ubisoft Reflections. Accessing the data for a specific game requires permission from the main studio/team involved in its development - this presents a major obstacle, given the fact that some teams are unwilling to share their data with a project involving an external entity e.g. a university. This was the case with some games in the Tom Clancy's series, which were attractive options due to their player feedback features. Other teams, while willing to share their data, did not possess the appropriate analytics. This was the case with games such as Trials, Trackmania and Starlink, in which player positions are not tracked. These factors culminated in the selection of For Honor as the game to use for the project, since we successfully gained access to its telemetry data, which contained the required analytics. Additionally we were provided with tracking tags which allowed us to interpret the database with less difficulty.

3.1.2 Description

Figure 3.1: Screenshot of the game For Honor. Image approved for public use by Ubisoft.

For Honor is a medieval action game developed and released by Ubisoft Montreal in 2017 (Figure 3.1), it features both a singleplayer campaign and several multiplayer modes. Players fight against their opponents using class-specific melee weapons. Performing certain actions such as killing multiple enemies consecutively allows a player to gain Feats - additional perks which grant the player certain abilities. A maximum of four

Feats can be equipped at a time.
One of For Honor's multiplayer modes is called Dominion [14]. This consists of a four-versus-four match in which players must capture and hold multiple positions in a battlefield. There are three of these points, A, B and C (see Figure 3.5). Points are earned through occupying the zones and killing the significantly weaker AI enemy minions that fight at point B. Players earn double points for staying on points A and C. When one team reaches 1000 points, the other team starts to "break" - respawning is disabled for that team except through revival by other teammates. Once all of the breaking team's members are killed, the opposing team wins. The breaking team can make a comeback if they reduce the other team's score below 1000 by taking zones, thus regaining the ability to respawn and preventing a loss \downarrow. At the end of the game, players have the option of giving feedback in the form of a rating out of five stars.

3.2 Data Collection

There are two kinds of data which are used for the project: playthroughs and user feedback. The former is used to train the system while the latter is used as ground truth to evaluate the system's performance. The project is a Weakly Supervised Learning (WSL) problem in and of itself. This is because the playthroughs do not contain player feedback for individual regions of the levels (the intended output of the system), but have ratings for the overall match instead. We then compare the system's output to that of users, in a similar manner to how WSL-trained object detectors have their outputted bounding boxes compared to ground truth boxes (Section 2.3).

[^2]
3.2.1 Playthroughs

Map	Playthrough count
Citadel Gate	424
Overwatch	180
Sanctuary Bridge	189
River Fort	67
High Fort	78
The Shard	156
Total	$\mathbf{1 0 9 4}$

Table 3.1: No. of playthroughs associated with each For Honor map.

The collected data consists of aggregated information on the in-game activity of players in Dominion matches from Febuary to April 2017, played across 6 different maps (see Table 3.1 and Figure 3.5). The choice of only using Dominion matches is due to the fact that it consists of 1 round per match and at its core, is about control of the map. Therefore geometry plays a more significant role in this game mode than in others. Modes such as Duel consist of multiple rounds confined to a relatively small area where the geometry of the map would have no clear influence on the feedback. Also the presence of multiple rounds introduces an additional layer of complexity, since there is only one opportunity to give feedback - it would be non-trivial to determine how each round influences the final rating. Each playthrough is considered to be a single data point a playthrough consists of the in-game activity of one player during one match. In total, over 1000 playthroughs (Table 3.1) were collected for training; the information contained within them can be divided into three categories:

1. Positions - the player's (x, y, z) coordinates are recorded every 3 seconds. The orientation of the player at each position is estimated by computing the direction vector between two consecutive positions (see Figure 3.2). However this estimation does not account for motions such as reversing or strafing. The player's bounty level (number of equipped Feats they have unlocked) at each position is also recorded.
2. Actions - these include kills, deaths, attacks, defends, dodges, point changes and special kills. Some of these actions themselves consist of different types e.g. death by hit, falling, fire e.t.c. The attack and defend events also output player health -
this is used to calculate the net change in the player's health over specific periods of time.
3. Feedback - a rating out of five stars given by the player at the end of a match.

Map geometry is essential information to acquire for training. Each map is represented by a polygon mesh, which is used in combination with the positional data to infer the local geometry surrounding the player throughout the match. This is achieved using ray-casting with BSP trees [24]. A UV sphere is created for each position coordinate, with rays projecting outward from the surface normals of the polygon defining the sphere. Then the intersection between these rays and the mesh's polygons are computed. Figures 3.2 and 3.3 help to illustrate the information gathered as the player moves along a path.

Figure 3.2: Top-down illustration of a typical player path (black line) through a level, their estimated orientation at each position (green arrow) and ray-casting from one of the positions (red arrowed lines).

Figure 3.3: A UV sphere (yellow) at one of the player positions in a playthrough, with its corresponding map. Every smaller red sphere represents a point where a ray is emitted.

Figure 3.4: Example of a coloured map produced by a user for use as ground truth to evaluate the performance of our feedback tool. Areas highlighted in green (red) are those the user deemed to be good (bad), while areas left uncoloured are considered neutral.

3.2.2 User Feedback

In order to establish the performance of the system, its outputs must be compared to a ground truth. Since the feedback is visualised by highlighting areas of the map, the ground truth would ideally be in a similar form i.e. maps which have been manually highlighted by humans. A study was carried out in which participants were asked to play Dominion matches on the For Honor maps used in the project, before highlighting the areas of the map they did/did not enjoy. The instructions given to each user can be found in Appendix A. The original intention was to utilise Ubisoft Reflection's User Research Lab to hold play sessions in which participants could play the game and colour the maps afterwards. However the COVID-19 pandemic had begun during the planning phase of the study, resulting in the closure of the lab. Therefore we reached out to all employees of Ubisoft Reflections and Ubisoft Leamington, who could access the game
for free through their Uplay accounts, and play it within their own homes. Those who expressed interest in participating were given the instructions and told to play in their own time. It is important to note that this introduces a self-selection bias, the effect of which can be seen in the fact that the majority of individuals were familiar with For Honor and had played the game prior to participating in the study. After playing several matches on a particular map, the user would employ a graphical interface to highlight the areas of the map they deemed to be good, bad or neutral. An example of this is featured in Figure 3.4. Players were also asked to provide qualitative feedback on why they coloured the map the way they did. The weaknesses of this approach are discussed later in Section 6.1. The diversity of the participants is reflected in the feedback they gave - there were mixed opinions for several regions across the maps. For most areas the majority of users had similar feedback, with only one or two disagreeing. However for certain areas the feedback was almost unanimous. For further detail, Appendix B features the full set of coloured maps, along with consolidated qualitative feedback.
Note: for the rest of this report, the term "players" will be used to refer to the general audiences of computer games, as well as the people whose gameplay data was gathered in the form of playthroughs. The term "users" will refer to the participants in the study.

Figure 3.5: Overview of the For Honor maps used in the project, with Dominion spawn locations (orange and blue) and capture points (black), taken from [23].

Chapter 4

Methodology

Figure 4.1: Graph showing percentage of playthroughs for each rating which resulted in a win/loss.

Our goal is similar to that of Liapis et al. [32, 33] in their development of the Sentient Sketchbook - to assist the level designer by automatically evaluating the content they have created. However unlike the Sentient Sketchbook which evaluates levels according to specific patterns such as symmetry and area control, the tool we aim to build focuses purely on enjoyment as judged by the player. In order for a system
to "know" what features of the level will provide the most (or least) enjoyment to prospective players, it must first be able to derive a mapping between gameplay features and feedback i.e. carry out gameplay-based Player Experience Modelling (PEM) using existing gameplay and feedback data for training. Most of the previous studies on PEM involved the formation of a hypothesis about the root of player enjoyment, followed by an experiment to demonstrate support for this hypothesis. For this project we have made as few assumptions as possible about the sources of player enjoyment, instead relying on machine learning and data mining algorithms to search for patterns in raw gameplay data and analysing their outputs i.e. a model-free approach. The authors of Sentient Sketchbook acknowledge that while map sketches can be applied to genres other than those for which they have performed experiments, the objective functions would need to be adapted and may be less straightforward to optimize [47]. These hard-coded rules may make it non-trivial for a designer who has a specific game in mind - machine learning has the advantage here as it can adapt to specific scenarios and players.

One may be inclined to assume that the player's feedback is most strongly dependent on whether their team won or lost the match. To test this, the correlation between a team's win/loss and the given rating was computed using Pearson, Spearman and Kendall correlation (Table 4.1). The results of each playthrough (win/loss) were also plotted against the given rating in a bar graph which can be found in Figure 4.1. The calculated coefficients, as well as an observation of the bar graph, indicate a low correlation between these features. This suggests that other factors must be involved in determining the player's judgement of a match.

In this chapter the methods by which we achieve our goal of level evaluation are described. As mentioned earlier, creating a mapping between gameplay features and feedback is left to machine learning algorithms. Therefore the features must first be represented in a way which makes it easier for these algorithms to interpret them (Section 4.1). In our case we represent the playthroughs as a series of "moments". The next step is to select those moments which have the strongest influence on player feedback. We call this moment detection and employ two different methods to carry it out - weakly supervised learning (Section 4.2) and a probabilistic regression ensemble (Section 4.3). The selected moments and feedback are then used to train a neural network which can predict feedback, given a set of level features. Finally these predictions are visualised as heat maps (Section 4.4 which are compared to user-generated maps in order to assess the accuracy of our system (Section 4.5).

Correlation	Value
Pearson	0.16
Spearman	0.16
Kendall	0.15

Table 4.1: Results of computing the correlation between player win/loss and the rating given at the end of the match.

4.1 Feature Representation

Playthrough

Figure 4.2: Illustration of how a playthrough is divided into chunks with a 50% overlap.

The large amount of data per playthrough leads to a common problem to which game data is subjected: the curse of dimensionality. Coined by Richard E. Bellman [6], it refers to the increasing difficulty of finding valid correlations within data as the number of dimensions increases. However this problem can be alleviated via the use of feature engineering and dimensionality reduction techniques. For example when interpreting the motion of a player, their long term motion appears to strongly depend on their location in the map. However by focusing on short sequences of their motion, this becomes less important and can be disregarded, thereby reducing the dimensionality. This need for a more compact representation of data is the same motivation for Siva and Xiang's use of STIP features [56]. They divided their videos into action cuboids described by bag-of-words histograms, derived from clustering STIP features. Similarly, we divide our playthroughs into sequences described by histograms, derived from clustering features. The technique used in this thesis for dimensionality reduction is principal component
analysis (PCA) [20. This allows one to transform data to a lower-dimensional space while keeping most of the original information. The sequences into which we divide the playthroughs contain information about the player's motion, their bounty level (no. of equipped feats), their actions and the geometry which surrounds them. Dimensionality reduction is carried out in a two-fold PCA process: in the first step, events which are tracked regularly are considered (motion, bounties and geometry); in the second step, events which are tracked at their moment of occurrence are considered (actions such as kills, deaths, dodges e.t.c.). Also the time period over which events are considered in the 2nd step is longer than that of the first step. The reason for carrying out a 2 -fold process is in order to obtain statistical strength. In terms of player motion, this refers to the fact that when we look at the overall player path in a playthrough, most of these paths are dissimilar to each other. However when we divide a path into shorter motion sequences, we begin to see more of these motions occurring across multiple playthroughs. Clustering the spatial information from the first step and feeding this into the second step means the system does not have to learn those features independently, making it easier for the algorithm to discard irrelevant information. This method also adds non-linearity to the model.

4.1.1 Player Motion

Consider a single playthrough $\mathbf{P}_{\mathbf{x}}$ containing all of the player's positions which have been tracked every 3 seconds:

$$
\begin{equation*}
\mathbf{P}_{\mathbf{x}}=\left[\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4} \ldots \mathbf{x}_{n}\right], \tag{4.1}
\end{equation*}
$$

where $\mathbf{x}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ is the i th tracked position of the player during the match and n is the total number of positions in the playthrough. As mentioned in the previous chapter, these are used to estimate the orientation $\phi_{i}=\left(\phi_{x i}, \phi_{y i}, \phi_{z i}\right)$ of the player at each of these points in time:

$$
\begin{equation*}
\mathbf{P}_{\phi}=\left[\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4} \ldots \phi_{n}\right], \tag{4.2}
\end{equation*}
$$

where

$$
\phi_{i}=\left\{\begin{array}{l}
\frac{1}{\left|\mathbf{x}_{i+1}-\mathbf{x}_{i}\right|}\left(\mathbf{x}_{i+1}-\mathbf{x}_{i}\right) \text { for } i \neq n, \\
\phi_{n-1} \text { for } i=n .
\end{array}\right.
$$

Since each position event also contains the player's bounty level $0 \leq b_{i} \leq 4$, the playthrough in terms of the players bounties at each point in time can be expressed as

$$
\begin{equation*}
\mathbf{P}_{b}=\left[b_{0}, b_{1}, b_{2}, b_{3}, b_{4} \ldots b_{n}\right] . \tag{4.3}
\end{equation*}
$$

4.1.2 Local Geometry

For the geometry surrounding the player, the results of the ray-casting per position i are encoded in a vector \mathbf{G}_{i} of size R where R is the number of rays projected outward from the (x, y, z) coordinate. Therefore the playthrough in terms of the local geometry is

$$
\begin{equation*}
\mathbf{P}_{\mathbf{G}}=\left[\mathbf{G}_{0}, \mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}, \mathbf{G}_{4} \ldots \mathbf{G}_{n}\right], \tag{4.4}
\end{equation*}
$$

where the values of the elements of \mathbf{G}_{i} (here denoted as g_{r} where r is the ray index) are dependent on the manner in which the geometry was captured. Several different methods were considered:

1. Map proximity - This is based on the idea of lower distances being more important since the game mainly involves close combat. Each ray is projected outward, and at 3 separate distances (Figure 4.3a), the intersection is computed in the following way:

$$
g_{r}=\left\{\begin{array}{l}
0 \text { if intersection with the map } \\
d \text { if no intersection with the map }
\end{array}\right.
$$

where d is the shortest distance between the ray target and the map's object mesh.
2. Nested spheres - In order to better capture the surrounding geometry and compensate for the reduction of ray density with distance, three spheres of increasing radii are used, with the outermost sphere possessing the highest resolution for its polygon (Figure 4.3b). For each ray, its intersection with the map's structure at a fixed distance is computed:

$$
g_{r}=\left\{\begin{array}{l}
1 \text { if intersection with the map } \\
0 \text { if no intersection with the map. }
\end{array}\right.
$$

3. Intersection distance - Each ray is projected out to a distance $d_{\text {lim }}=200$ from the sphere, and the distance the ray travels before it intersects the map $d_{\text {int }}$ is
computed:

$$
g_{r}=\left\{\begin{array}{l}
d_{\text {int }} \text { if intersection with the map } \\
d_{l i m} \text { if no intersection with the map }
\end{array}\right.
$$

4. Log-distance - This may provide a better representation of For Honor player behaviour as players are more likely to place importance on events the closer they are to them, especially considering that there is no ranged combat in For Honor. It is equivalent to the intersection distance method but computing the logarithm of the distance instead:

$$
g_{r}=\left\{\begin{array}{l}
\log \left(d_{\text {int }}\right) \text { if intersection with the map } \\
\log \left(d_{\text {lim }}\right) \text { if no intersection with the map }
\end{array}\right.
$$

Figure 4.3: Illustration of two ray casting methods to capture the geometry surrounding the player.

The total number of positions across all playthroughs for the Riverfort map is $\sim 10^{4}$. Due to the run-time costs incurred by computing the geometry vector for every single player position, an approximation of the geometry around the player is used instead. First the positions for a given map are clustered via k-means and the geometry vector around each cluster centre is calculated. Then these geometry vectors are cached for later use. When the geometry surrounding a given position is required, the nearest cluster to that position is computed and its corresponding geometry vector is used. The number
of clusters $N_{m c}$ to use for each map is determined by starting with a standard number of $N_{m c}=1000$ for River Fort, before extrapolating this to the other maps via calculation of their surface areas. This ensures that the number of clusters is proportional to the size of each map. The initial value of 1000 is the result of a compromise between computation time and the distance between a cluster centre and the player's actual position.

4.1.3 Zero-meaning \& Clustering

Considering the playthrough in terms of all of its features which have been discussed so far, a window of variable size w is used to divide the playthrough into chunks corresponding to a specific period of time. The following illustrates the first chunk for a window of size $w=4$ (corresponding to a period of 12 seconds, considering the sampling rate of position events):

$$
\begin{gather*}
{\left[\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}, \mathbf{x}_{6}, \mathbf{x}_{7} \ldots \mathbf{x}_{n}\right]} \\
\\
{\left[\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}, \phi_{6}, \phi_{7} \ldots \phi_{n}\right]} \tag{4.5}\\
{\left[b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7} \ldots b_{n}\right]} \\
{[\underbrace{\mathbf{G}_{0}, \mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}}_{\mathbf{C}_{1,1}}, \mathbf{G}_{4}, \mathbf{G}_{5}, \mathbf{G}_{6}, \mathbf{G}_{7} \ldots \mathbf{G}_{n}]} \\
\mathbf{C}_{1,1}=\left[\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, b_{0}, b_{1}, b_{2}, b_{3}, \mathbf{G}_{0}, \mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}\right],
\end{gather*}
$$

where $\mathbf{C}_{j, k}$ is the k th chunk of the j th playthrough. Since only the player's motion needs to be captured, the positions in the chunk are zero-meaned - each position is subtracted by the mean of all the positions in the chunk $\mu_{j, k}$, therefore $\mathbf{C}_{1,1}$ can be re-written as
$\mathbf{C}_{1,1}=\left[\mathbf{x}_{0}-\mu_{1,1}, \mathbf{x}_{1}-\mu_{1,1}, \mathbf{x}_{2}-\mu_{1,1}, \mathbf{x}_{3}-\mu_{1,1}, \phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, b_{0}, b_{1}, b_{2}, b_{3}, \mathbf{G}_{0}, \mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}\right]$.

This offset is performed in order to create an invariance to the player's location within the level (see Figure 4.4). The chunks in a playthrough are taken in a manner illustrated in Figure 4.2 , where consecutive chunks are shifted forward by $\frac{w}{2}$ each time. For example $\mathbf{C}_{1,2}$ would encompass the range $i=2,3,4,5$ in (4.5). This is continued until the end of the playthrough; the whole process is repeated for the other playthroughs and the chunks are stacked in a matrix \mathbf{X}, whose covariance Σ is calculated. After this the eigenvalues and eigenvectors of Σ are found; each eigenvalue represents the amount of variance along the direction of its corresponding eigenvector i.e. the energy along that dimension. We seek a projection which maximises the variance. Therefore the eigenvectors are stacked in descending order of their eigenvalues to produce a rotation matrix \mathbf{R} where most of
the energy is pushed into the first dimension, and the dimensions with little to no energy are discarded (here we keep 99.9% of the energy). \mathbf{R} is then applied to the original data matrix to transform it to a lower dimensional space and the first two columns of this newly represented data matrix \mathbf{Z} (corresponding to the two highest-energy features) are plotted against each other (Figure 4.5a).

[10, 20, 30, 40]

[-15, -5, 5, 15]

[90, 100, 110, 120]
Zero-mean
(subtract 105)
$[-15,-5,5,15]$

Figure 4.4: Illustration of zero-meaning two x-position sequences in two different locations of a 1-D platformer. After zero-meaning, the resultant arrays are identical, allowing the PCA algorithm to interpret these as two identical motions

Clustering is then applied to the newly represented data to isolate the various motion/geometry sequences. Three different clustering algorithms were considered for this task: k-means, DBSCAN and mean-shift. DBSCAN and mean-shift were considered because the number of clusters is dynamically determined from the data. Also they are both density-based methods, and hence were thought to have been ideal for isolating the dense structures observed in the PCA results. Figures 4.5b-d feature the results of clustering for all three algorithms. It was difficult to search for a set of parameters which produced a sufficient number of clusters for DBSCAN; mean-shift began to produce similar results to k-means as the bandwidth of the kernel was increased, but required significantly more computation time. Therefore k-means was used throughout the pipeline for the sake of simplicity and speed. We denote the number of clusters derived at this stage as κ_{1}.

Figure 4.5: Results of PCA (a) and applying different clustering algorithms to them (b-d). The distribution of the points is centered on $(0,0)$ due to zero-meaning and possibly a high frequency of occurrences of the players standing still. The apparent drifting of points to the right is likely due to the presence of bounties in the data, as these are always equal to or greater than zero.

One can infer the in-game motions to which the clusters correspond by extracting their centres, before processing them backwards through PCA. Figure 4.6 shows the results of this. One would expect the existence of these kind of motions in an action game like For Honor.

Figure 4.6: Inferred motions from using windows with $w=6$ and $\kappa_{1}=20$.

4.1.4 Player Actions \& Clustering

Figure 4.7: The 2-fold PCA and clustering method used for processing the data. In this example $\kappa_{1}=8$ and $\kappa_{2}=5$.

Figure 4.7 illustrates the remainder of the process for clarity. Once specific spatial clusters are found, we repeat the process of dividing playthroughs into chunks as before. However this time we use a window size of $w^{\prime}>w$. Also instead of filling a vector with the features already discussed, we use the results of 4.1 .3 to count the number of times these clusters occur within that window. Therefore the vector for a given chunk may resemble the following:

$$
\begin{equation*}
\mathbf{C}_{j, k}^{\prime}=\left[S_{1}, S_{2}, S_{3} \ldots S_{\kappa_{1}}\right] \tag{4.7}
\end{equation*}
$$

where S_{i} is the number of times the ith cluster occurs in the chunk. Actions which occur in this same interval are concatenated on to this vector:

$$
\begin{equation*}
\mathbf{C}_{j, k}^{\prime}=\left[S_{1}, S_{2}, S_{3} \ldots S_{\kappa_{1}}, A_{1}, A_{2}, A_{3} \ldots A_{N_{A}}\right] \tag{4.8}
\end{equation*}
$$

where A_{l} is the number of occurrences of the l th action in the chunk and N_{A} is the number of possible actions. PCA and clustering are carried out as before, giving rise to κ_{2} clusters which essentially correspond to player behaviours. Finally, chunks of size $w^{\prime \prime}>w^{\prime}$ are taken per level playthrough; these behaviour clusters are then searched for in these intervals to produce the final bag-of-words histograms containing κ_{2} bins. Each histogram represents a moment in a playthrough.

4.2 Moment Detection - Weakly Supervised Learning

The first method of moment detection uses weakly supervised learning (WSL) to select one moment per playthrough which is considered to be that which most strongly influenced the rating given to that playthrough. These moments and their corresponding playthrough ratings are used to train two model: one which can map an unseen playthrough's moments to a score representing the predicted feedback; the other which can map a level's geometry to a predicted feedback score.

4.2.1 Multiple Instance Learning

WSL is applied via a MIL approach closely following the method outlined in Section 2.3 for action detection in videos. Here the goal is moment detection in playthroughs. Unlike that method, the histograms are not root-normalised since the chunks they represent are all the same size. Therefore conventional normalisation can be used without worrying about biases towards histograms of a particular size. Also the concepts of objectness and saliency do not translate well to gameplay moment detection, hence we do not
introduce these steps during WSL. When searching for "good" moments, the positive bags correspond to playthroughs that received an overall rating of 5 stars, while the rest of the playthroughs correspond to negative bags. The main objective here is: given a set of playthroughs that have been rated 5 stars and a set that have not, select one moment per playthrough which had the strongest influence on that 5 star rating. In other words, select one instance from each positive bag such that the selection minimises equation (2.13). This function is used instead of equation 2.14, since the lack of an abundance of negative instances compared to positive ones invalidates the utilisation of negative mining. Given the number of positive bags, and the number of instances per bag, brute force is not a feasible approach (the number of possible selections can be as high as $\approx 10^{323}$). Solving this involves the implementation of a genetic algorithm, which searches for optimal solutions amongst a population of random candidates. The implementation of the algorithm can be found in Appendix C. A constant mutation rate is used, and new random candidates are added during the optimisation in order to diversify the population and reduce the chance of falling into a local optimum.
In order to locate "bad" moments, WSL is carried out again; this time treating playthroughs with 1 or 2 stars as positive bags, and the rest as negative. An illustration of WSL being carried out on playthroughs to extract "good" and "bad" moments can be found in Figure 4.8.
For both "good" and "bad" moments, WSL is run a second time but with the selected instances removed from all of the positive bags. The reason for doing this is because WSL assumes that there is a single moment per playthrough which most strongly influences the feedback given for that session. However unlike objects-of-interest which occupy a finite discrete number of pixels in an image, moments in a playthrough are continuous - the point at which one moment ends and another begins is ambiguous. Also during a game, consecutive moments may be causally connected. Therefore selecting the second strongest moments is a better reflection of the psychology of player enjoyment. It also allows for slight expansion of the data set used for the next step in the pipeline.

Figure 4.8: Diagram of WSL being carried out on a pair of playthrough sets to extract "good" moments (orange), and on another pair to extract "bad" moments (blue). The star ratings of the playthroughs in each set is shown on top.

4.2.2 Model Training

The "good" and "bad" moments obtained from WSL are used to train a model which can serve as either a player experience model for playthroughs, or an evaluation function for levels. Training the model using these moments directly would result in a system that only achieves the former - to take playthroughs as input for predicting their feedback. Therefore in order to build a system which can take in a level i.e. map geometry as input, the training data must also consist solely of geometry. This is achieved by separating the geometry from the other information within each moment. More specifically each WSL-derived moment is located within its playthrough, before only extracting the information associated with the geometry covered within that moment. In the WSL examples covered in Section 2.3 , the specific image patches/video segments were used to train classifiers. Here regression is more appropriate because classification will only be able to give a binary output i.e. good/bad; we require a continuous output such as a predicted rating ranging between 0 and 5 . Since the input world state of each moment is binary, a neural network is trained using TensorFlow. Cross entropy is used for the cost function, and optimisation is carried out using Adam. The set of moments is split into a training and validation set according to a ratio of 80:20; Figure 4.9 features a visualisation of the optimisation's performance during a typical run. The validation loss/accuracy appears to slightly improve before dropping and staying roughly constant throughout the process - this may be attributed to overfitting, as the optimiser starts to model noise within the training set. Attempts to improve the validation accuracy via regularisation and implementing an ensemble model were unsuccessful.

Figure 4.9: Graphical visualisation of optimisation during regression model training for WSL method.

4.2.3 Predicting Playthrough Feedback

The trained model is applied to a set of playthroughs from a map which is not used in the original training data. The purpose of this is to assess the system's ability to predict the feedback of an individual playthrough, by comparing its performance to the ground truth (the given rating in this case). These playthroughs contain the same type of data as those used in training. The system evaluates a playthrough by splitting it into chunks of length $w^{\prime \prime}$, before transforming the information in each chunk into a moment. Then each moment is inputted into the model, returning a rating out of five stars for each interval. At this point, a function is needed which can convert all of these
individual ratings into one overall rating for the playthrough. In other words for a given playthrough with rating R containing n chunks, find the function f such that:

$$
\begin{equation*}
R=f\left(r_{1}, r_{2}, r_{3}, \ldots r_{n}\right) \tag{4.9}
\end{equation*}
$$

where r_{i} is the rating of the i th chunk in the playthrough. The way in which a player decides what rating to give would no doubt vary from person to person [17] - this is why several different metrics were attempted for calculating the overall rating:

- Mean - computing the mean is based on the assumption that all moments contribute to the overall rating with equal weight.
- Mode - this is linked to the idea that the player will base their feedback on the most memorable moments. For example if a playthrough's feedback consisted of $[5,5,1,5,5,1,5]$, the 1 -star moments would be easily forgotten. In Masthoff's paper this is referred to as "avoiding misery" i.e. ignoring a low rating due to it being overshadowed by the numerous higher ratings [40].
- Weighted average - moderate values are discarded before computing the mean. This is based on the idea that more extreme moments will be more memorable, and that people have an affinity for extremes when it comes to giving feedback. This is apparent in Figure 4.1, as 5 stars and 1 star are the two most frequent ratings given in the training set of playthroughs. In fact this may be why some companies have opted for binary feedback systems, rather than 5 -star ratings [25].
- Most extreme - the single most extreme value is taken to be the overall rating. This is simply the motivation of the weighted average metric taken to its greatest extent, and is also linked to the assumption of using WSL.

4.3 Moment Detection - Probabilistic Regression Ensemble

The second method of moment detection applies PCA and clustering to the moments. This is combined with the playthrough ratings to form a probability distribution over the rating for each cluster. These moment clusters and their corresponding rating distributions are, through various metrics, used to predict the rating of unseen playthroughs. They are also used to train a model which can map level geometry to a rating probability distribution representing predicted feedback.

Figure 4.10: Result of applying PCA to the moment histograms, where each moment (datapoint) is colour coded according to the rating of its playthrough.

4.3.1 Further Clustering

PCA is applied to the bag-of-words histograms, the results of which are featured in Figure 4.10. Each histogram has been colour coded according to the rating assigned to its playthrough. K-means clustering is then applied to these results, in which each cluster corresponds to a probability distribution over the rating. Figure 4.11 illustrates this entire process for clarity. One can think of this collection of clusters as an ensemble of probabilistic regressors. A playthrough consists of a sequence of clusters (moments). In order to determine the extent to which each cluster influences the player's feedback for that playthrough, one must observe the difference between consecutive clusters. For example a transition between two clusters which are very different to each other could indicate that something important has occurred within the session; something which could significantly affect the overall feedback. Visualising this in 2-D space involves applying Multidimensional Scaling (MDS) to the matrix of Jaccard distances between the clusters. Figure 4.12 illustrates the results of this, as well as the transitions between
moments during playthroughs. The jumping between distant clusters indicates the sudden occurrence of something significant, and possibly influential.

Figure 4.11: Diagram showing how the PRE method involves taking playthroughs with their corresponding ratings (left), applying clustering to their moments (middle), resulting in probability distributions over the ratings (right).

Figure 4.12: Frame from animation of playthroughs in terms of clustered moments each point represents a specific type of moment and the lines represent the transitions between those moments as the playthrough occurs. The colour of the cluster represents its 5 -star rating.

4.3.2 Cluster Voting for Predicting Playthrough Feedback

Each cluster corresponds to a probability distribution over the rating, represented as a 5 bin histogram where each bin corresponds to a star. Now that each playthrough consists of a series of distributions, the next step is to formulate a method of combining these distributions so they would correspond to the overall rating of that playthrough. We refer to this method as cluster voting since each cluster (moment) gets a "vote" on how influential it is towards the overall rating. This influence is determined by the weight assigned to it - how do we calculate the weight for each cluster such that for each playthrough:

$$
\begin{equation*}
R=\sum_{i=1}^{N} \omega_{i} c_{i}, \tag{4.10}
\end{equation*}
$$

where R is the overall rating of the playthrough, ω_{i} is the weight assigned to the i th cluster and N is the number of clusters in the playthrough? The range of values for R depends on whether our model is binary or multinomial. In a binary model we are only concerned if the feedback is good or bad, corresponding to a value of 1 or 0 respectively. However in a multinomial model it takes a value from 1 to 5 . Four metrics were created for the purposes of determining a suitable way of modelling a user's overall feedback as a function of the moments they experienced:

1. Equal weighting - every playthrough is assigned the same weight. This is based on the assumption that every moment contributes to the overall rating equally.
2. Lowest entropy - every moment is assigned a weight of zero except the one with the lowest entropy. This is due to the fact that the distribution with the lowest entropy will be most dissimilar to the others i.e. the moment in which the most significant change occurs during gameplay. This is inspired by WSL as we are choosing one key moment of interest from each playthrough, based on its dissimilarity from all of the other moments.
3. Log entropy weighting - this is an existing entropic method for weight determination of criteria:

$$
\begin{equation*}
\omega_{i}=1+\frac{1}{\log (n)} \sum_{j=1}^{n} p_{i j} \log \left(p_{i j}\right), \tag{4.11}
\end{equation*}
$$

where n is the number of possible outcomes (5 for multinomial, 2 for binary) and $p_{i j}$ is the probability value in the j th bin of the i th moment. This formula was taken from [30].
4. Our formula - this was developed by introducing the following boundary conditions:

$$
\begin{array}{ll}
S=0, & \omega=\infty \\
S=-\log \left(\frac{1}{5}\right), & \omega=0,
\end{array}
$$

where S is the Shannon entropy of the cluster. The first condition is based on the fact that $S=0$ implies every moment belonging to that cluster has the same rating; there is maximum certainty of the rating. The following equation satisfied these two conditions:

$$
\begin{equation*}
\omega_{i}=\frac{n-1}{\left(\frac{1}{b}\right)^{-S_{i}}-1}-1, \tag{4.14}
\end{equation*}
$$

where b is the logarithm base (2 in our case).

4.3.3 Model Training for Level Evaluation

In order to build a system which can evaluate levels, the geometry for each moment in the clusters is separated in a similar manner to that described in Section 4.2.2. However unlike the previous method, this system would output a probability distribution over the rating, rather than a single scalar value. Due to this desired output, a simple neural network with a Dirichlet output layer is trained using Tensorflow and Keras. Optimisation is carried out using Adam, and the cost function corresponds to the negative log-likelihood of the Dirichlet distribution with the inclusion of a prior. Appendix D gives this in more mathematical detail. The training and validation sets are split according to a ratio of 80:20 and shuffled according to a random seed. The performance of the model on these sets during optimisation for a typical run is visualised in Figure 4.13 - convergence to an optimum solution appears to be achieved, given that the validation accuracy exceeds 0.9 by the end of the optimisation process.

Figure 4.13: Graphical visualisation of optimisation during regression model training for the PRE method.

4.4 Heat Map Generation

Figure 4.14: Illustration of heat map construction for map evaluation: two random paths have been plotted on a mesh, with ray casting at each point hitting the closest vertices, and the colouring of the triangles corresponding to the predicted feedback of those paths. Green represents positive feedback, red negative, with yellow indicating an even mixture of the two.

After training a model which can take level geometry as input and output a measure of the rating, we now obtain the fundamental tool for evaluating levels. This evaluation is presented visually as a "heat map of enjoyment" - regions of the level are colour-coded according to the outputted ratings given to them, via the input of these regions' geometry into the trained model. The creation of such heat maps first involves plotting many random paths (we use 10^{4}) throughout the level, before computing the geometry for each path via ray casting (Figure 4.14). In order to ensure that these paths reflect actual player movement as accurately as possible, a Markov model is trained using a method loosely inspired by Wang, Yang and Shi [67]. The points along these random
paths are taken from the position cluster centres derived in Section 4.1 - the number of transitions between clusters is then computed and stored in a matrix, which is finally converted to a transition probability matrix through normalisation of rows:

$$
\mathbf{M}_{\mathbf{T}}=\left(\begin{array}{cccc}
p_{11} & p_{12} & \ldots & p_{1 N_{m c}} \tag{4.15}\\
p_{21} & p_{22} & \ldots & p_{2 N_{m c}} \\
\vdots & \vdots & \ddots & \vdots \\
p_{N_{m c} 1} & p_{N_{m c} 2} & \ldots & p_{N_{m c} N_{m c}}
\end{array}\right), \quad p_{i j}=\frac{1}{\sum_{j=1}^{N_{m c}} T_{i j}} T_{i j}
$$

where $T_{i j}$ is the number of times in the playthrough data that a transition takes place from position cluster i to j. This helps to avoid plotting paths through non-traversable areas of the map. The geometry for each path is then inputted into the trained model which outputs a score. This score is then assigned to every vertex which is within a certain distance of the path. Once all scores from all paths have been assigned, the mean score for each vertex is calculated and then converted into an RGB colour. Figure 4.15 features an example of a heat map generated this way.

Figure 4.15: An example of a rendered heat map, where the vertices have been coloured according to the predicted normalised scores of the random paths plotted within their vicinity.

4.5 Algorithm Performance

Figure 4.16: Illustration of Jaccard index for bounding boxes in computer vision, taken from [49]. An index of greater than 0.5 starts to indicate strong agreement.

In order to assess the performance of the evaluation tool, the algorithmic heat maps are compared to those produced by the human participants in Section 3.2.2. Quantification of this comparison, the heat map accuracy (HMA), is achieved through the calculation of a metric related to the Jaccard index. This is defined as the Intersection over Union (IoU) and, in the context of computer vision, is a measurement of the area of overlap between two bounding boxes (see Figure 4.16). In the context of our project, image masking is used to compute the HMA. For both types of heat map, the good, bad and neutral areas are isolated separately and their corresponding overlaps are calculated before combining them into one final accuracy score. However our system outputs a continuous heat map; we require a method of introducing thresholds for the boundaries between good, bad and neutral on the score scale in Figure 4.15. Additionally we assume that every user will have their own individual thresholds for these boundaries. For these reasons, cumulative distribution functions (CDFs) are introduced. The scores for each vertex are sorted before putting them through a CDF transform (Figure 4.17). Then they are put through the inverse CDF transform of the user map (Figure 4.18). Since the CDFs of each user will always differ (see Figure 4.19), HMA calculations are carried out on a per-user basis. As an example, Figure 4.20 shows the image masks for the heat map featured in Figure 4.19d.

Figure 4.17: The CDF of an algorithmic heat map.

Figure 4.18: The inverse CDF of a user map.

Calculation of the overlap for a specific area is performed on a per-pixel basis:

$$
\begin{equation*}
H M A=\frac{P_{\text {good }}+P_{\text {bad }}+P_{\text {neutral }}}{P_{\text {full }}} \tag{4.16}
\end{equation*}
$$

where $P_{\text {good }}, P_{\text {bad }}$ and $P_{\text {neutral }}$ are the number of matching pixels between the algorithmic and user maps for the good, bad and neutral regions, respectively. $P_{\text {full }}$ is the number of pixels in the full mask (the traversable region of the map).

Figure 4.19: An example of an algorithmic heat map on Citadel Gate, and the resultant heat map from transforming it via the CDF of a given user's map.

Since in practice our system is intended to be applied to maps which are still under development, its performance must be assessed by testing it on "unseen" maps. Therefore for both map evaluation and playthrough predictions, the system is trained using the data from five maps and tested on data from the sixth - this is carried out across all six maps used in the project.

Figure 4.20: Image masks for the heat map in Figure 4.19 d .

Chapter 5

Results and Discussion

The pipeline is dependent on the configuration of hyperparameters associated with feature representation, namely the window sizes into which the chunks are split as well as the number of clusters used in the two steps $\left(w, w^{\prime \prime}, w^{\prime \prime \prime}, \kappa_{1}, \kappa_{2}\right)$. Additionally there are multiple stages within the pipeline where data is shuffled according to a seed value. Therefore for a given configuration, the pipeline is run multiple times and the results are loaded into histograms. The average values of the histograms for heat map accuracy (HMA) are displayed in tables which can be found in Appendix F. Searching for the optimal set of results is carried out by first observing the "Mean" column to find the user with the highest "worst" score among all of the maps - this is known as the "best-matched user" (BMU). Then the median for each of these user's sets across all configurations is computed, and the highest is selected. The optimum configuration when using weakly supervised learning (WSL) is (2, 20, 50, 22, 7) and that for using a probabilistic regression ensemble (PRE) is ($6,16,50,12,3$). The results featured and discussed within this chapter are be those produced under these configurations, unless stated otherwise.

5.1 Evaluating Maps

In order to determine which method of capturing geometry around the player would be used, a set of HMAs is computed for random configurations of these hyperparameters using the four methods described in Section 4.1.2. These can be found in Appendix E and they indicate that using the intersection distance gives rise to high accuracies across all six maps for at least one of the users. Therefore this is the method of local geometry capture used to produce our main results.

Figures 5.1 and 5.2 feature the histograms of HMAs for all users under the optima of WSL and PRE respectively. The wide range of values is due to the fact that the algorithmic maps produced by the system are a prediction of the average player feedback, since it has been trained using the in-game activity of hundreds of players. The user maps are a reflection of that individual user's feedback, therefore discrepancies between the algorithmic and user maps are to be expected. Some users are better representatives of the average For Honor player than others - this becomes clearer when we only display the results for the BMU and the worst-matched user (WMU), featured in Figures 5.3 and 5.5 for WSL, and Figures 5.4 and Figure 5.6 for PRE. We can see that in most cases, the distribution of values is greater in the BMU and WMU histograms for WSL compared to PRE. This is most likely due to the increased source of noise introduced by WSL, since this process is influenced by a random seed in the genetic algorithm in addition to that of the neural network. The only notable exception to this is Sanctuary Bridge, where the variance appears to be equal across both methods. However this may be attributed to Sanctuary Bridge's significantly small size compared to the other maps. It is important to note that the BMU and WMU are the same for both methods these are User 6 and User 10 respectively. This is easier to observe in Figure 5.7, which features scatter plots of accuracies across all users. In fact, the ranking of users in order of lowest accuracy value is almost identical in both methods, with the exception of two users. Focusing on the BMU, their accuracies score greater than 50% across all maps for both methods, indicating good agreement between their feedback and that predicted by our system. However PRE gives rise to a smaller range of values, with a slightly higher average.
Figure 5.7 b indicates that the WMU can be considered an outlier in comparison to the other users, given the distribution of their values. This is further exemplified when we look at the qualitative feedback across all users (Appendix B). Most users reacted positively to the points where minions battle, due to the intense gameplay, open space and the ability to easily "farm up" their rank. By contrast the WMU saw these areas as "clickfests", with unreasonable amounts of space. Given their low values, combined with their qualitative feedback, it is plausible that the WMU represents a minority opinion among the For Honor community - a dislike of intense gameplay, preferring locations which are more isolated from combat. This may explain why they coloured most of Sanctuary Bridge in red, since the map's smaller size compresses the area of combat and concentrates the intense gameplay.
Both scatter plots indicate that there is no strong correlation between map evaluation accuracy and the field in which a given user specialises. The BMU is the only artist
within the set of users, however data from other artists would need to be gathered before drawing any links between this and the feedback of general players.

Figure 5.1: Histograms of accuracies, expressed as percentages, for each map across all users (WSL).

Figure 5.2: Histograms of accuracies, expressed as percentages, for each map across all users (PRE).

Figure 5.3: Histograms of accuracies, expressed as percentages, for the BMU across all maps (WSL).

Figure 5.4: Histograms of accuracies, expressed as percentages, for the BMU across all maps (PRE).

Figure 5.5: Histograms of accuracies, expressed as percentages, for the WMU across all maps (WSL).

Figure 5.6: Histograms of accuracies, expressed as percentages, for the WMU across all maps (PRE).

Method 1.

Method 2.
Figure 5.7: Scatter plots of heat map accuracies for all users and their maps under the optimal hyperparameter configurations, where the users have been ordered by their lowest accuracy, and colour coded according to their role within the industry.

5.2 Predicting Playthrough Feedback

With regards to predicting the ratings of playthroughs, the accuracy of the predictions would have to be compared to the baseline. Table 5.1 features the baseline accuracy for the playthrough training and test sets for all six maps under evaluation. This is found by computing the percentage of playthroughs within each set which are rated 5 stars the metrics must be able to perform better than simply guessing a blanket rating for all playthroughs.
Note: In this context, the training set refers to the set of playthroughs associated with the five maps involved in training the system. The test set refers to the set of "unseen" playthroughs i.e. those associated with the sixth map not used in training.

Test Map	Baseline Accuracy (\%)	
	Training	Test
Citadel Gate	58.1	52.8
Overwatch	54.9	59.5
Sanctuary Bridge	53.2	66.7
River Fort	55.0	60.3
High Fort	54.3	72.1
The Shard	57.2	46.1

Table 5.1: Baseline accuracies for training and testing playthrough sets.

Tables 5.2 and 5.3 respectively show the training and test accuracies of the four metrics discussed in Section 4.2.3. They clearly show that Metric 4 (using the single most extreme rating in a playthrough) gives the most accurate results. However none of the metrics are able to produce an accuracy meeting the baseline across any of the maps, let alone surpassing it. Also Metric 3 (weighted average) produces the exact same results as Metric 1 (mean) in all cases, indicating that using WSL produces a model which will only predict more extreme values from given moments. This makes sense, as the corresponding ratings for the moments outputted using WSL are either 0 or 1 .

Test Map	Test Accuracy (\%)			
	Metric 1	Metric 2	Metric 3	Metric 4
Citadel Gate	48.1	48.3	48.1	48.9
Overwatch	36.7	37.8	36.7	40.3
Sanctuary Bridge	34.6	35.7	34.6	39.2
Riverfort	39.6	40.4	39.6	42.8
Highfort	30.6	32.3	30.6	35.9
The Shard	45.6	46.6	45.6	49.8

Table 5.2: Training accuracies for predicting playthroughs using WSL.

Test Map	Test Accuracy (\%)			
	Metric 1	Metric 2	Metric 3	Metric 4
Citadel Gate	41.2	41.2	41.2	41.7
Overwatch	36.1	38.7	36.1	43.7
Sanctuary Bridge	43.2	44.2	43.2	46.9
Riverfort	36.6	37.1	36.6	41.6
Highfort	36.8	38.0	36.8	40.1
The Shard	34.5	34.6	34.5	39.0

Table 5.3: Test accuracies for predicting playthroughs using WSL.

Tables 5.4 and 5.5 respectively feature the training and test prediction accuracies of the four metrics discussed in Section 4.3 .2 for a multinomial model. The training accuracies achieved for metrics $1-3$ across all maps either meet or slightly exceed the baseline, while metric 4 falls slightly below the baseline. All of the metrics display poor performance when looking at their test accuracies which fall far below the baseline. When switching to a binary model (see Tables 5.6 and 5.7 the accuracies display some improvement, with all of the metrics exceeding the training baseline. However despite the increase in performance, their test accuracies fail to meet the respective baselines for all maps except The Shard. Ultimately neither method produces a playthrough feedback predictor which is able to significantly exceed its respective baseline, therefore our system is not effective for this purpose.

Test Map	Training Accuracy (\%)			
	Metric 1	Metric 2	Metric 3	Metric 4
Citadel Gate	58.3	58.3	58.3	56.6
Overwatch	55.0	55.0	55.9	54.4
Sanctuary Bridge	53.8	53.8	53.8	52.9
Riverfort	55.3	55.3	55.3	54.0
Highfort	54.6	54.3	54.6	53.6
The Shard	57.9	57.4	57.9	56.7

Table 5.4: Training accuracies for predicting playthroughs using PRE via a multinomial model.

Test Map	Test Accuracy (\%)			
	Metric 1	Metric 2	Metric 3	Metric 4
Citadel Gate	23.2	23.5	23.2	21.4
Overwatch	24.2	24.8	24.2	17.0
Sanctuary Bridge	30.1	30.1	30.1	24.4
Riverfort	55.6	58.7	55.6	48.9
Highfort	50.0	48.5	50.0	36.8
The Shard	30.5	30.5	30.5	24.8

Table 5.5: Test accuracies for predicting playthroughs using PRE via a multinomial model.

Test Map	Training Accuracy (\%)			
	Metric 1	Metric 2	Metric 3	Metric 4
Citadel Gate	62.5	62.8	62.3	60.1
Overwatch	59.4	60.6	59.4	58.4
Sanctuary Bridge	58.8	58.0	58.8	57.8
Riverfort	59.1	59.4	63.1	59.7
Highfort	60.9	59.7	60.9	59.0
The Shard	60.1	59.8	60.2	58.8

Table 5.6: Training accuracies for predicting playthroughs using PRE via a binary model.

Test Map	Test Accuracy (\%)			
	Metric 1	Metric 2	Metric 3	Metric 4
Citadel Gate	47.7	48.2	47.7	46.4
Overwatch	43.8	41.8	43.8	39.2
Sanctuary Bridge	42.3	41.7	42.3	39.1
Riverfort	54.0	54.0	54.0	46.0
Highfort	39.7	41.2	39.7	39.7
The Shard	58.9	57.4	58.9	51.1

Table 5.7: Test accuracies for predicting playthroughs using PRE via a binary model.

Chapter 6

Conclusion

The main goal of this research was to create a system which, given a game level as input, can predict the feedback the level will elicit via the application of machine learning to gameplay, geometry and feedback data. We have achieved this by visualising the feedback in the form of heat maps of enjoyment, whose accuracies have been determined via comparison to coloured maps produced from user study participants. Two distinct methods were used to train the system - one employing WSL, and the other involving a PRE. Both of the methods have produced heat maps which are in good agreement with users, however using WSL led to outputs which were more susceptible to noise and took significantly longer to run. Also this method suffered from overfitting during the training process. Therefore PRE is the preferred method to use. The features extracted from the data were also used to train a system which can predict the ratings of playthroughs, however neither method was able to produce an effective predictor.

6.1 Limitations

Since it requires existing telemetry data for training, the presented system may be more suited for DLCs e.g. developing additional maps for a title which has already been released, and using gameplay from this title as training data. Sequels may also be an option, as they generally contain the same gameplay features as their predecessors. However one should not completely dismiss the system as a tool for designers working on a completely new title - games within the same genre will share a vast range of common features, regardless of whether they have been developed by different teams.

Searching for an appropriate data set was one of the most difficult aspects of the
project. Training the system is heavily dependent on the features which are available for extraction. For example the relatively low sampling rate of 1 position every 3 seconds constrains the size of the chunks into which the playthroughs could be split for carrying out PCA. The lack of regularly sampled player positions was the reason that data sets from other games were rejected for use in the project. However this limitation is mainly associated with the telemetry and storage capabilities of game development studios.
Feedback data is also essential for training the system, however this does not necessarily have to be limited to a 5 -star rating - a binary like/dislike system could also be used. Additionally if there are no explicit feedback metrics available, one could infer a "rating-by-proxy". For example quitting in the middle of a match could be interpreted as negative feedback. Alternatively if a game's multiplayer modes rotate between random maps in the lobby with the ability to vote to skip, a map's unpopularity may be reflected in the number of times it has been skipped.

There were limitations to the manner in which the heat map accuracies (HMAs) were calculated. The algorithmic maps were produced by automatically colouring the vertices of the map, whereas the users were required to colour a top-down image of the map. This meant that comparisons between the two could only be achieved through pixel matching; this method cannot take into account areas with multiple levels e.g. bridges, walkways and multi-storey buildings. One way of resolving this would have been to ask participants to navigate the 3-D map and colour the regions using graphics software e.g. Blender. However participants may have found this process tedious and awkward; it may also have hindered or at least slowed down gathering of detailed user feedback.

6.2 Extensions

Since the system has been trained using data collected from hundreds of playthroughs, the heat maps it produces are a prediction of the average feedback across a vast number of players. However one way of improving the system could be to take into account different types of players i.e. for each game map, produced multiple heat maps, each displaying the predicted feedback of a specific type of player. This could be achieved by collecting data from the players' profiles such as:

- Total play time.
- Current level for each hero type.
- Game count for every game mode.
- Percentage completion of the campaign or trials.
- Total kill/death and win/loss counts.

This information could be fed into clustering algorithms to derive specific player types (similar to the work of Bauckhage et al. [5, Melhart et al. [41] and Ferguson et al. [15]) and combined with the existing system to diversify its feedback. Augmenting the system with this capability would be useful for a designer aiming to tailor their map to a particular subset of their audience.

In Figure 1.1 it was illustrated that player experience modelling (PEM) and content quality evaluation comprise half of the experience-driven procedural content generation (EDPCG) framework. A natural extension of the project would be to complete the framework by combining the system with PCG algorithms, resulting in a tool which can automatically generate multiple levels in which the designer will be able observe the predicted player reception.

6.3 Impact

While the system has not been integrated into a level designer toolbox or used in the development of any games at the time of writing, the project has attracted a great deal of interest from other teams across various studios. For example after presenting at UDS 2021 , the leader of another team was interested to see a research project other than theirs which placed an emphasis on geometry. Additionally at the La Forge Open House 2021, there was discussion of potential collaboration with another team working on a PCG tool - we discussed the idea of using our level evaluation tool to filter out unwanted maps amongst a population of candidates produced by their system. This links to the completion of the EDPCG framework mentioned in the previous section, as observing the predicted feedback in the candidates may help designers choose the candidate they wish to be the final design. Overall this shows that there is enormous potential for our system to be utilised in industry, fulfilling the mission statement of the CDE.

6.4 Outlook

We have presented a method for building a tool which can potentially provide designers with invaluable insight into how their creations will be received by their target audiences.

The presented system is meant to assist the designer without taking away their control or compromising their workflow. At the beginning of this thesis, the evolution of computer games was described in terms of graphics, play time and required manpower. The introduction of automation in the development lifecycle was also discussed, and the combination of our system with PCG software would be an extremely important tool for the game industry as a whole. However a more significant area undergoing rapid growth in recent years is data collection. Data is underpinning more and more aspects of our society, and harnessing the data of players fuels systems such as the one presented in this thesis. Our results and conclusions would be non-existent without the ability to collect, process and analyse data. As companies are able to gather a wider variety of player data in more efficient ways, PEM and level evaluation tools will continue to improve, and designers will be able to deliver truly personalised gaming experiences.

Bibliography

[1] Abbott, T., 2010. Mda framework - unconnected connectivity [Online]. Gamasutra. Available from: http://www.gamasutra.com/blogs/TuckerAbbott/ 20101212/88611/MDA_Framework_Unconnected_Connectivity.php [Accessed 26/04/2018].
[2] Alexe, B., Deselaers, T. and Ferrari, V., 2010. What is an object? 2010 ieee computer society conference on computer vision and pattern recognition, 13-18 June 2010 San Fransisco. IEEE, pp.73-80.
[3] Amores, J., 2013. Multiple instance classification: Review, taxonomy and comparative study. Artificial intelligence, 201, pp.81-105.
[4] Anon., 2014. Introduction to level design (internal ubisoft document).
[5] Bauckhage, C., Drachen, A. and Sifa, R., 2015. Clustering game behaviour data. Ieee transactions on computational intelligence and ai in games, 7(3), pp.266-278.
[6] Bellman, R., 1957. Dynamic programming. Princeton: Princeton University Press.
[7] Björk, S. and Holopainen, J., 2004. Patterns in game design. USA: Charles River Media Inc.
[8] Caicendo, J.C., C., M., Goodman, A., Singh, S. and Carpenter, A.E., 2018. Weakly supervised learning of single-cell feature embeddings. The ieee conference on computer vision and pattern recognition (cvpr), 18-22 June 2018 Salt Lake City. IEEE, pp.9309-9318.
[9] Cao, L., Liu, Z. and Huang, T., 2010. Cross-dataset action detection. Proceedings of the ieee computer society conference on computer vision and pattern recognition, 13-18 June San Francisco, California. IEEE, pp.1998-2005.
[10] CDE, 2021. Centre for digital entertainment official website [Online]. Available from: http://www.digital-entertainment.org/ [Accessed 12/07/2021].
[11] Csikszentmihalyi, M., 1990. Flow: The psychology of optimal experience. New York: Harper Perennial.
[12] Csurka, G., Dance, C.R., Fan, L., Willamowski, J. and Bray, C., 2004. Visual categorization with bags of keypoints. In workshop on statistical learning in computer vision, eccv. pp.1-22.
[13] Egenfeldt-Nielsen, S., Smith, J.H. and Tosca, S.P., 2008. Understanding video games: The essential introduction. New York: Taylor and Francis.
[14] Fenlon, W., 2015. For honor: light strategy and heavy swords in a medieval dueler [Online]. Available from: https://www.pcgamer.com/ for-honor-light-strategy-and-heavy-swords-in-a-medieval-dueler/ [Accessed 21/10/2020].
[15] Ferguson, M., Devlin, S., Kudenko, D. and Walker, J.A., 2020. Player style clustering without game variables. Proceedings of the international conference on the foundations of digital games (fdg) 2020, 15-18 September Bugibba Malta. ACM, pp.1-4.
[16] GamesTM, 2017. The evolution of motion capture [Online]. GamesTM. Available from: https://www.gamestm.co.uk/features/ the-evolution-of-motion-capture/ [Accessed 02/01/2017].
[17] Glenski, M., Stoddard, G., Resnick, P. and Weninger, T., 2018. Guessthekarma: A game to assess social rating systems. Proceedings of the acm on human-computer interaction, 2(CSCW), pp.59:1-15.
[18] Green, M.C., Brock, T.C. and Kaufmann, G.F., 2004. Understanding media enjoyment: The role of transportation into narrative worlds. Communication theory, 14(4), pp.311-327.
[19] Guckelsberger, C., Salge, C., Gow, J. and Cairns, P., 2017. Predicting player experience without the player.: An exploratory study. Proceedings of the annual symposium on computer-human interaction in play, 15-18 October Amsterdam. ACM, pp.305-315.
[20] Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24, pp.417-441.
[21] Hunicke, R., LeBlanc, M. and Zubek, R., 2004. Mda: A formal approach to game design and game research. Proceedings of the challenges in games ai workshop, nineteenth national conference of artificial intelligence, 25-26 July 2004 California. California: Press, pp.1-5.
[22] Iida, H., Takeshita, N. and Yoshimura, J., 2002. A metric for entertainment of boardgames: it's implication for evolution of chess variants. In: R. Nakatsu and J. Hoshino, eds. Ifip first international workshop on entertainment computing, 14-17 May 2002, Makuhari. London: Kluwer Academic, pp.65-72.
[23] IndigoEX, 2017. For honor map overviews [Online]. Available from: https: //imgur.com/gallery/J9LuU/comment/962465585 [Accessed 20/02/2017].
[24] Ize, T., Wald, I. and Parker, S.G., 2009. Ray tracing with the bsp tree. 2008 ieee symposium on interactive ray tracing, 9-10 August Los Angeles. IEEE, pp.159-166.
[25] Khanna, H., 2017. The psychology of rating systems [Online]. Available from: https://hackernoon.com/ the-psychology-of-rating-systems-3103e26fddd8] [Accessed 05/04/2020].
[26] Koster, R., 2014. A theory of fun for game design. 2nd ed. Sebastopol CA: O'Reilly Media.
[27] Lankveld, G., Spronck, P. and Rauterberg, M., 2008. Difficulty scaling through incongruity. Proceedings of the 4 th international artificial intelligence and interactive digital entertainment conference, 22-24 October 2008, California. California: Stanford University, pp.228-229.
[28] Laptev, I., 2005. On space-time interest points. International journal of computer vision, 64, pp.107-123.
[29] Lazzaro, N., 2004. Why we play games: Four keys to more emotion in player experiences. (510-658-8077). Oakland CA: XEODesign Inc.
[30] Li, C.H., 2015. Log entropy weighting [Online]. Available from: https://www. youtube.com/watch?v=8K23Sjw_Hd4 [Accessed 03/10/2020].
[31] Liapis, A., 2013. Sentient sketchbook demonstration (with captions) [Online]. Available from: https://www.youtube.com/watch?v=Eop1AuFcujE [Accessed 02/04/2020].
[32] Liapis, A., Yannakakis, G.N. and Togelius, J., 2011. Towards a generic method of evaluating game levels. 7th aaai conference on artificial intelligence and interactive digital entertainment (aiide-11), 11-14 October 2011 California. AAAI Press, pp.30-36.
[33] Liapis, A., Yannakakis, G.N. and Togelius, J., 2013. Sentient sketchbook: computer-aided game level authoring. Proceedings of the 8 th international conference on the foundations of digital games (fdg 2013), 14-17 May 2013 Crete. Society for the Advancement of the Science of Digital Games, pp.213-220.
[34] Liapis, A., Yannakakis, G.N. and Togelius, J., 2014. Designer modeling for sentient sketchbook. Ieee conference on computatonal intelligence and games, 26-29 August 2014 Dortmund. IEEE.
[35] Luenendonk, M., 2015. The gaming industry - an introduction [Online]. Cleverism. Available from: https://www.cleverism.com/ gaming-industry-introduction/ [Accessed 13/04/2018].
[36] Malone, T.W., 1980. What makes things fun to learn? heuristics for designing instructional computer games. Sigsmall ' 80 proceedings of the 3 rd acm sigsmall symposium and the first sigpc symposium on small systems. pp.162-169.
[37] Mandryk, R.L. and Atkins, M.S., 2007. A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies. International journal of human-computer studies, 65(4), pp.329-347.
[38] Mandryk, R.L., Inkpen, K.M. and Calvert, T.W., 2006. Using psychophysiological techniques to measure user experience with entertainment technologies. Behaviour and information technology, 25(6), pp.141-158.
[39] Martyn, C., 2019. Email exchange with senior technical designer.
[40] Masthoff, J., 2003. Modeling the multiple people that are me. Lecture notes in artificial intelligence (subseries of lecture notes in computer science), 2702, pp.258-262.
[41] Melhart, D., Azadvar, A., Canossa, A., Liapis, A. and Yannakakis, G.N., 2019. Your gameplay says it all: Modelling motivation in tom clancys the division. Ieee conference on games, 20-23 August 2019 London. London: IEEE, pp.61-68.
[42] Nabi, R.L. and Krcmar, M., 2004. Conceptualizing media enjoyment as attitude: Implications for mass media effects research. Communication theory, 14(4), pp.288-310.
[43] Nesterov, Y., 2005. Smooth minimization of non-smooth functions. Mathematical programming, 103, pp.127-152.
[44] Pedersen, C., Togelius, J. and Yannakakis, G.N., 2009. Modeling player experience in super mario bros. 2009 ieee symposium on computational intelligence and games, 7-10 September 2009 Milan. IEEE, pp.132-139.
[45] Pedersen, C., Togelius, J. and Yannakakis, G.N., 2009. Optimization of platform game levels for player experience. Proceedings of the 5th artificial intelligence and interactive digital entertainment conference, 14-16 October 2009 California. California: AAAI, pp.191-192.
[46] Pedersen, C., Togelius, J. and Yannakakis, G.N., 2010. Modeling player experience for content creation. Ieee transactions on computational intelligence and ai in games, 2(1), pp.54-67.
[47] Preuss, M., Liapis, A. and Togelius, J., 2014. Searching for good and diverse game levels. Ieee conference on computatonal intelligence and games, 26-29 August 2014 Dortmund. IEEE.
[48] Raney, A.A., 2004. Expanding disposition theory: Reconsidering character liking, moral evaluations, and enjoyment. Communication theory, 14(4), pp.348-369.
[49] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I. and Savarese, S., 2019. Generalized intersection over union. The ieee conference on computer vision and pattern recognition (cvpr), 16-20 June Long Beach. IEEE, pp.658-666.
[50] Rigby, S. and Ryan, R.M., 2006. The player experience of need satisfaction. Florida: Immersyve Inc.
[51] Rigby, S. and Ryan, R.M., 2011. Glued to games: How video games draw us in and hold us spellbound. California: Library of Congress.
[52] Rigby, S., Ryan, R.M. and Przybylski, A., 2006. The motivational pull of video games: A self-determination theory approach. Motivation and emotion, 30(4), pp.344-360.
[53] Schell, J., 2008. The art of game design. Burlington MA: Morgan Kaufmann Publishers.
[54] Shaker, N., Togelius, J. and Nelson, M.J., 2016. Procedural content generation in games. Switzerland: Springer International Publishing.
[55] Siva, P., Russell, C. and Xiang, T., 2012. In defence of negative mining for annotating weakly labelled data. In: A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato and C. Schmid, eds. 12th european conference on computer vision, 7-13 October 2012 Florence. Springer, pp.594-608.
[56] Siva, P. and Xiang, T., 2011. Weakly supervised action detection. British machine vision conference, 2, pp.1-11.
[57] Smith, G., 2014. The future of procedural content generation in games. Experimental ai in games workshop at aiide, 4 October Raleigh, North Carolina. Persson, pp.53-57.
[58] Smith, P., 2016. Going underground: How reflections tamed randomness [Online]. Guildford: Ubisoft. Available from: http://blog.ubi.com/en-GB/ divisions-procedural-underground/ [Accessed 02/08/2018].
[59] Song, H.O., Girshick, R., Jegelka, S., Mairal, J., Harchaoui, Z. and Darrell, T., 2014. On learning to localize objects with minimal supervision. 31st international conference on machine learning, icml 2014, 21-26 June Beijing, China. JMLR, pp.3582-3590.
[60] Sundström, P., 2005. Exploring the affective loop. Ph.D. thesis. Stockholm University.
[61] Sweetser, P. and Wyeth, P., 2005. Gameflow: A model for evaluating player enjoyment in games. Computers in entertainment, 3(3), p.3.
[62] Taylor, T., 2018. How to take your workout outdoors: Escape to sun valley for a mountain biking adventure [Online]. Available from: https://www.si.com/edge/2017/05/05/
[Accessed 14/06/2018].
[63] Togelius, J., Kastbjerg, E., Schedl, D. and Yannakakis, G.N., 2011. What is procedural content generation? mario on the borderline. Proceedings of the 2nd international workshop on procedural content generation in games. Bordeaux: Association for Computing Machinery.
[64] Togelius, J., Yannakakis, G.N., Stanley, K. and Browne, C., 2011. Search-based procedural content generation. Ieee transactions on computational intelligence and ai in games, 3(3), pp.172-186.
[65] Ubisoft reflections official website, 2021. [Online]. Available from: https:// reflections.ubisoft.com/ [Accessed 12/07/2021].
[66] Uijlings, J.R., Van De Sande, K.E., Gevers, T. and Smeulders, A.W., 2013. Selective search for object recognition. International journal of computer vision, 104(2), pp.154-171.
[67] Wang, H., Yang, Z. and Shi, Y., 2019. Next location prediction based on an adaboost-markov model of mobile users. Sensors (switzerland), 19(6), pp.1-19.
[68] Yannakakis, G.N. and Hallam, J., 2004. Evolving opponents for interesting interactive computer games. Proceedings of the 8th international conference on simulation of adaptive behavior, Los Angeles. Cambridge: MIT Press, pp.499-508.
[69] Yannakakis, G.N. and Hallam, J., 2005. A generic approach for obtaining higher entertainment in predator/prey games. Journal of game development, 1(3), pp.23-30.
[70] Yannakakis, G.N. and Hallam, J., 2006. Towards capturing and enhancing entertainment in computer games. Advances in artificial intelligence, 18-20 May Crete. Springer Berlin Heidelberg, pp.432-442.
[71] Yannakakis, G.N. and Hallam, J., 2007. Feature selection for capturing the experience of fun. Proceedings of the aiide07 workshop on optimizing player satisfaction, 6-8 June 2007 Stanford. California: AAAI, pp.37-42.
[72] Yannakakis, G.N. and Hallam, J., 2007. Towards optimizing entertainment in computer games. Applied artificial intelligence, 21(10), pp.933-971.
[73] Yannakakis, G.N., Hallam, J. and Lund, H.H., 2006. Capturing entertainment through heart rate dynamics in the playware playground. In: R. Harper, M. Rauterberg and M. Combetto, eds. Entertainment computing - icec 2006, 20-22 September 2006 Cambridge. Springer-Verlag, pp.314-317.
[74] Yannakakis, G.N., Hallam, J. and Lund, H.H., 2006. Comparative fun analysis in the innovative playware game platform. Proceedings of the 1st world conference for fun 'n games, 26-28 June 2006, Preston. Preston: University of Central Lancashire, pp.64-70.
[75] Yannakakis, G.N., Lund, H.H. and Hallam, J., 2006. Modeling children's entertainment in the playware playground. In: S. Louis and G. Kendall, eds. 2006 ieee symposium on computational intelligence and games, 22-24 May 2006 Reno. AAAI, pp.134-141.
[76] Yannakakis, G.N. and Togelius, J., 2011. Experience-driven procedural content generation. Ieee transactions on affective computing, 2(3), pp.147-161.
[77] Yuan, J., Liu, Z. and Wu, Y., 2011. Discriminative video pattern search for efficient action detection. Ieee transactions on pattern analysis and machine intelligence, 33(9), pp.1728-1743.
[78] Zhou, Z.H., 2018. A brief introduction to weakly supervised learning. National science review, 5(1), pp.44-53.

Appendix A - User Study

Instructions

Azeem Khan

Supervisor: Tom Haines
azeem.khan@ubisoft.com

FH QC Test Instructions

We are conducting a user study with the University of Bath to compare the performance of a system which has been trained to evaluate game levels, with the feedback of a human

By participating in this, you give consent for your feedback to be used for the purposes of this study. You are free to quit at any time.

For each map:

Play several custom matches of Dominion with bots (any weather condition) until you feel confident that you understand the layout of the map. Play as any hero you wish.

Open the map's image in Paint 3D and, using the spray can, highlight in green (red) the areas in which you experienced the most (least) enjoyment. If you felt neutral about a certain area, just leave it uncoloured. In a separate text file, write a few lines explaining your colouring (e.g. "the area around B was most enjoyable because.......") Then save the image and text file and send to azeem.khan@ubisoft.com. An example is shown below:

Appendix B - Summarised User Feedback

Citadel Gate

Capture Point A

Most disputed point in terms of feedback. Ramp leading up to it feels like wasted potential as it is far removed from other regions of map and rarely visited, but defenders can use it to ambush. Pillars/columns result in an enclosed space in which it is difficult to manoeuvre/dodge.

Capture Point B

All users except one marked this green wide open area with lots of action, and users never felt overwhelmed/swarmed by minions unlike with some other maps. One user even mentioned that there could have been more environmental dangers here to make things more exciting. The one user who marked this red was vague in their feedback "clickfest with no real fun to it or. . . unreasonable amounts of space".

Capture Point C

Consistently good across all users, mainly due to having plenty of space to fight e.g. circular prop in the middle can be used to put distance between you and the enemy. Also many entrances/exits. Two users complained about the ladders under this area however.

Other

Spawn near C was noted by two users to be visually impressive during rush into battle, particularly the view of the citadel from here. Paths leading up to C and A were
deemed by some users to be bad due to narrowness. Areas connecting points are empty and unused for combat - seen as boring by some, but others find this makes it easy to quickly move between the points (one user even doing a lap) and circumvent the minions in B if one does not wish to go through them to get from point to point. NOTE: User 9 marked many sections red which he considered to be the most fun, but they were not visited very often (see: wasted potential in Capture Point A section).

User 1.

User 3.

User 5.

User 2.

User 4.

User 6 (BMU).

Overwatch

Capture Point A

Many users liked this point due to its close connection to both bridges, large fighting area and spread out ledges. However one user said the capture point itself might be too

large. It also appears to be rarely visited by enemies which makes it easy to capture but also quite boring, which is why some users marked it red.

Capture Point B

Minions are fought here, which is fun. But one can get aerial attacked by enemies from the bridge above.

Capture Point C

Feedback mostly positive - multiple entrances and the ability to activate floor panels which drop into spike pits makes for very intense and fun gameplay. However being on the receiving end of these traps can be extremely frustrating, as well as the narrow corridors leading up to this point.

Other

Bridges - mixed feedback - disagreement over whether bridges were wide enough or not. Opportunity for jumping down and ambushing enemies but this can damage your character and doesn't seem worth trying as most of the time there wont be an enemy directly underneath you. Also falling through holes can be annoying, but some
people appreciate that these environmental hazards make the game more interesting. Underneath bridges - negative - minions end up being funnelled into two corridors and enclosed space makes it difficult to wield certain weapons. Two users reported erratic AI behaviour which dragged out the game.

User 1.

User 3.

User 5.

User 2.

User 4.

User 6 (BMU).

Sanctuary Bridge

Capture Points A \& C

Very similar - map in general is symmetric. Isolation and proximity to their respective spawn points makes game more competitive i.e. teams compete solely for point B and every second counts. Almost all users marked these green.

Capture Point B

Mostly positive, as the narrow structure of whole map ensures that most enemies will be encountered here, producing numerous intense fights. Also nearby hole/well can be used to throw enemies down. However one user felt it was too compact and an easy place to get killed. Walkways surrounding B can be fun if you can activate traps successfully or knock off opponents, but they are not often visited and hence can be boring or frustrating if you are knocked off.

Other

Structure of the whole map "compresses fun" so apart from in spawn points, there weren't many uneventful moments/areas.

Riverfort

Capture Point A

Majority opinion — good - elevated position makes for good vantage point from which to observe battlefield. Very fun and easy to defend due to opportunities for 1v1 and throwing/kicking players off. However these same things make it very difficult for attackers due to narrow passages either side of A serving as bottlenecks making it hard to manoeuvre. Also players can get stuck on/kicked off ladders.

Capture Point B

Players generally enjoyed fighting on an open battlefield where they can easily kill minions and use them to farm up rank, but admitted it can be annoying when harassed/swarmed by minions, which also provide cover for enemies to attack. Ladders leading from here to A are bad (mentioned above).

Capture Point C

Mixed opinions - geometry of C provides interesting and challenging combat situations. Area is secluded from other points. Upper area generally good, lower area generally bad due to enclosed space and being prone to ambush. Similar to A, bottlenecks make defending easy and attacking hard.

Other

Spawn points/outskirts of map - mostly neutral to bad. Most players see these as boring or just sprint zones. Teammates not waiting for each other can create sense of discord. However opening experience of rushing into battle with teammates is exciting.

User 1.

User 2.

User 3.

User 5.

User 7.

User 9.

User 4.

User 6 (BMU).

User 8.

User 10 (WMU).

Highfort

Capture Point A

Almost unanimously positive. Epic feeling from having to climb up to reach it. Good view of battlefield. Ladder provides quick escape but User 4 complained that one can get magnetised on to the ladder (this person had a problem with ladders in general). Circular shape and middle pillar give room to fight and obstacle to play with, respectively. Good fights here.

Capture Point B

Mixed feedback. Open area with lots of minions but tends to get slightly more negative feedback overall compared to minion zones of other maps. Low amount of environmental hazards except for a fire pit which provides fun. Can get easily swarmed/interrupted by minions, making it easier to die at the hands of enemy players, who use cover points to ambush. Cart acts as a blocker into which the player can be pushed, breaking the flow of combat.

Capture Point C

Almost unanimously positive. Plenty of space to fight. Cliffs and bridges provide interesting gameplay with opportunities to throw people off. Risk of falling/getting knocked off bridges was exciting for most, but an issue for User 3. Risky nature of these bridges make it easier to defend C, and attackers feel like they are working towards the point. View from this area also pleasing.

Other

Map is very large - results in underused areas between spawn points and control zones, however these regions have good visibility.

User 1.

User 2.

The Shard

Capture Point A

Majority of users gave positive feedback for the point itself, and negative feedback for the corridors leading up to it. Elevation makes for good vantage point, spike wall is fun
to push enemies into, and contains separate spaces for fair fights.

Capture Point B

Fighting pit with many environmental hazards and possible ambushes from enemies jumping/climbing down from above - chaotic and intense gameplay. Most users gave positive feedback for these features, but User 8 felt it was too compact and marked it red. One user mentioned the insta-death pit may be excessive.

Capture Point C

This is where the minions fight, unlike in the other maps. User 8 marked this red because they felt it was too compact and impeded player movement, but User 10 marked it red because they felt it was large and boring, preferring the more "interior" points. Most users liked this point, mainly because they either like killing minions or because one can avoid the minions and easily move to the other points via the two large areas on either side of the point. Also there is good line of sight between this point and the other points.

Other

Routes/corridors between points can feel cramped/awkward.

User 1.

User 3.

User 2.

User 4.

User 5.

User 7.

User 9.

User 6 (BMU).

User 8.

User 10 (WMU).

Appendix C - Genetic Algorithm Implementation

1. A population of random candidate solutions is initialised:

$$
\left\{G_{1}, G_{2}, G_{3}, \ldots G_{P}\right\}
$$

where P is the size of the population.
2. The cost for each candidate is computed using equation 2.13 and the two with the lowest values are chosen e.g:

$$
G_{I}=\{1,0,0,2,1,3,1,0\} \quad G_{I I}=\{2,2,1,1,0,1,1,0\} .
$$

3. Crossover - each of these solutions are split in half, swapped and recombined:

$$
G_{I}=\{1,0,0,2,0,1,1,0\} \quad G_{I I}=\{2,2,1,1,1,3,1,0\} .
$$

4. Mutation - with a certain probability, one of the elements of the resulting "offspring" are changed:

$$
G_{I}=\{1,0,0,2,0,1,1,1\} \quad G_{I I}=\{2,2,1,1,1,3,1,0\} .
$$

5. These two new candidates are added to the population and the two which give the highest cost are deleted.
6. Steps 2 to 5 are repeated for a set number of generations.

Appendix D - Negative Dirichlet Loss

The expression for the log-likelihood of the Dirichlet distribution is:

$$
N L L=-\log \left(\frac{1}{B(\mathbf{c})} \prod_{i}^{5} \theta_{i}^{c_{i}-1}\right)
$$

where $\mathbf{c}=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right\}$ are the counts outputted by the neural network, $\boldsymbol{\theta}=$ $\left\{\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right\}$ are the parameters to be trained and

$$
B(\mathbf{c})=\frac{\Gamma\left(c_{1}\right) \Gamma\left(c_{2}\right) \Gamma\left(c_{3}\right) \Gamma\left(c_{4}\right) \Gamma\left(c_{5}\right)}{\Gamma\left(c_{1}+c_{2}+c_{3}+c_{4}+c_{5}\right)}
$$

is the Beta function. We then substitute this into the loss and include a prior via $\boldsymbol{\theta} \longrightarrow \boldsymbol{\theta}+\boldsymbol{\alpha}$ where $\boldsymbol{\alpha}=\{0.2,0.2,0.2,0.2,0.2\}$. This is equivalent to observing one of each star rating at the start before updating as more data is observed. After expansion, the loss now becomes

$$
\begin{aligned}
N L L= & \log \Gamma\left(c_{1}\right)+\log \Gamma\left(c_{2}\right)+\log \Gamma\left(c_{3}\right)+\log \Gamma\left(c_{4}\right)+\log \Gamma\left(c_{5}\right)-\log \Gamma\left(c_{1}+c_{2}+c_{3}+c_{4}+c_{5}\right) \\
& -\left(c_{1}-1\right) \log \left(\theta_{1}+\alpha_{1}\right)-\left(c_{2}-1\right) \log \left(\theta_{2}+\alpha_{2}\right)-\left(c_{3}-1\right) \log \left(\theta_{3}+\alpha_{3}\right) \\
& -\left(c_{4}-1\right) \log \left(\theta_{4}+\alpha_{4}\right)-\left(c_{5}-1\right) \log \left(\theta_{5}+\alpha_{5}\right),
\end{aligned}
$$

where $\log \Gamma$ is the \log-Gamma function.

Appendix E - Preliminary Map Evaluation Results by Geometry Capture Metric

	Citadel Gate	Overwatch	Sanctuary Bridge	Riverfort	Highfort	The Shard	Mean
User 1	50	45.6	48.6	41.4	47.1	65.4	49.7
User 2	42.9	48.5	39.5	31.9	38.7	43.6	40.9
User 3	46.8	55.2	50.5	54.8	43.9	51.7	50.5
User 4	52.2	57.2	53.1	59.5	51.6	68.0	56.9
User 5	62.0	61.2	38.8	60.6	52.1	50.2	54.2
User 6	58.3	64.5	55.6	52.7	70.6	66.6	61.4
User 7	43.9	45.8	37.9	30.8	48.0	37.7	40.7
User 8	53.7	60.3	54.6	40.9	70.9	53.2	55.6
User 9	40.5	37.8	37.5	44.9	43.0	41.1	40.8
User 10	50.6	40.7	40.4	48.7	44.8	40.4	44.3
Mean	50.1	51.7	45.7	46.6	51.1	51.8	

Table 1: Map Proximity.

	Citadel Gate	Overwatch	Sanctuary Bridge	Riverfort	Highfort	The Shard	Mean
User 1	48.3	47.1	51.0	42.8	44.8	60.5	49.1
User 2	40.7	44.2	43.3	62.4	31.3	40.8	43.8
User 3	46.6	49.1	46.7	48.2	41.1	58.7	48.4
User 4	55.2	61.8	42.6	52.0	55.3	66.6	55.6
User 5	60.5	64.5	34.1	64.0	46.0	51.1	53.4
User 6	56.7	59.9	57.1	54.5	75.0	66.4	61.6
User 7	42.5	55.5	43.3	62.9	45.6	42.4	48.7
User 8	56.8	57.7	48.2	49.9	68.6	50.8	55.3
User 9	36.9	49.6	30.7	49.7	41.2	42.2	41.7
User 10	48.9	30.8	48.4	47.4	47.9	33.7	42.9
Mean	49.3	52.0	44.5	53.4	49.7	51.3	

Table 2: Nested Spheres.

	Citadel Gate	Overwatch	Sanctuary Bridge	Riverfort	Highfort	The Shard	Mean
User 1	58.7	51.3	53.1	40.8	47.6	60.5	52.0
User 2	32.1	50.4	41.1	60.0	47.5	41.5	45.4
User 3	51.2	52.0	54.9	47.6	52.4	48.6	52.8
User 4	62.5	70.9	56.7	53.9	53.4	65.6	60.5
User 5	57.9	62.9	41.7	60.5	54.3	51.0	54.7
User 6	57.0	60.1	60.4	56.4	68.8	65.8	61.4
User 7	54.9	52.1	40.3	63.0	-	40.5	50.2
User 8	58	57.7	56.1	51.4	68.9	46.5	56.4
User 9	46.4	45.6	41.6	51.5	44.6	45.2	45.8
User 10	25	34.6	42.8	37.3	31.1	31.0	33.6
Mean	50.4	53.8	48.9	52.2	52.1	50.6	

Table 3: Intersection Distance.

	Citadel Gate	Overwatch	Sanctuary Bridge	Riverfort	Highfort	The Shard	Mean
User 1	50.1	43.0	49.8	44.3	45.6	63.4	49.4
User 2	34.3	51.9	42.8	32.6	43.2	39.0	40.6
User 3	36.5	59.5	56.3	48.8	46.2	58.5	51.0
User 4	49.6	49.7	56.4	54.3	46.3	66.1	53.7
User 5	50.8	60.3	39.3	57.7	55.1	50.5	52.3
User 6	52.6	65.3	58.5	47.4	69.3	65.0	59.7
User 7	38.1	47.5	40.5	35.4	-	40.3	40.4
User 8	48.1	64.2	58.4	41.5	74.3	41.0	54.6
User 9	41.3	40.5	43.3	44.5	42.8	44.0	42.7
User 10	52.0	44.0	43.2	48.0	39.5	28	42.5
Mean	45.3	52.6	48.9	45.5	51.4	49.6	

Table 4: Log-distance.

Note: Some entries have no values as that particular user's map was not available at the time these values were computed.

Appendix F - Full Results

Figure .13: Heat Map Accuracy Results (method 1).
$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right)(2,20,60,20,6)(2,20,50,22,7)(4,10,50,22,4)(6,10,40,12,7)(6,10,40,19,6)(6,16,50,12,3)(4,20,40,24,5)(6,10,60,20,10)(6,10,40,12,3)$
User 1

Citadel Gate	55.42680034	56.01291875	55.18873834	55.26633184	55.12244152	55.95727602	55.75135223	54.70622369	56.29879666
Overwatch	42.71783726	42.59956987	43.98915892	43.29935269	44.28291858	43.8285241	41.41719112	43.05172231	43.74793028
Sanctuary Bridge	51.52747143	53.03269288	51.45744787	50.18268922	50.2935542	51.86601172	50.90444128	50.50121884	51.48640357
Riverfort	37.44669781	41.38919032	40.33176282	40.59906935	42.62831332	40.61575724	40.80136986	39.79560999	40.72851518
Highfort	48.86906517	51.18608241	51.98232943	50.71091066	50.9883761	51.49619273	51.19321854	48.7056585	50.57240259
Shard	68.06422885	67.02412067	65.87857244	68.14078675	67.333833	66.90703389	67.28544181	68.8499622	66.38143199
User 2									
Citadel Gate	36.98682127	37.10787269	37.90862809	37.8709523	37.79725659	37.80823145	36.70009448	37.14415278	35.33512137
Overwatch	46.58766082	46.31711302	47.64128942	46.07782329	45.0351062	47.13093433	45.38449857	47.15680785	47.21235754
Sanctuary Bridge	41.64210564	41.18007911	41.43128206	42.41523191	42.49505668	40.97144754	42.23489881	42.29638155	41.63075313
Riverfort	47.21014893	42.55975241	44.54360484	42.67849388	43.42133016	46.32383337	43.58688714	46.0199834	43.74679715
Highfort	41.03692229	41.25648485	38.89771339	38.02699266	37.96946099	39.41921491	38.94481526	40.91802908	37.73433606
Shard	48.71622114	46.73308674	47.92613546	50.36292172	47.64882758	48.64826524	49.54493283	48.12022753	48.9793851
User 3									
Citadel Gate	47.46569875	46.88717843	47.99258837	48.04922348	48.68487636	46.7744579	47.70668069	46.15922432	47.9891516
Overwatch	56.24067528	55.6820954	57.28321343	56.1198069	54.93754103	57.12066015	55.19760116	56.12361204	57.44137802
Sanctuary Bridge	53.40170909	56.46413809	53.90079027	54.55136558	54.37130611	54.8843553	54.40238653	54.0299227	55.45254566
Riverfort	45.95190086	46.60824023	45.80271312	46.48996485	46.98710469	47.66994092	46.53010343	46.13095526	46.26691003
Highfort	46.30852336	47.40497133	46.75811012	47.09521789	46.82609944	47.41180483	47.8239863	47.27594217	45.19853103
Shard	48.40814415	47.39795487	49.45179029	47.71796118	45.79669262	48.44716371	48.03435174	48.19535008	46.66018583
User 4									
Citadel Gate	60.16250188	59.2801761	59.64086577	56.9899242	58.98689174	58.23078555	59.37577506	59.10343415	58.29801599
Overwatch	50.10825609	49.06856592	51.63865149	47.22831334	55.0828801	48.84089365	46.07782259	52.27857632	49.77218639
Sanctuary Bridge	55.04026244	58.79472551	55.70161307	56.28886948	53.45731348	56.39159502	55.99423527	53.66588431	57.94592586
Riverfort	49.6759449	51.74471357	50.8416034	52.44407151	51.91130353	51.63361	52.20774993	50.16728616	51.99913353
Highfort	55.20811812	60.15385628	61.59494904	65.10508372	63.06212795	61.18050387	62.03114186	56.02979717	60.1820709
Shard	68.92816526	68.09987633	68.5467411	67.59271031	67.33503421	68.07782563	68.43678819	68.15311496	67.42451842
User 5									
Citadel Gate	54.30631418	55.57365078	55.55253287	55.79450457	54.35691928	54.96039489	55.60159197	53.41189328	54.44320978
Overwatch	58.66798945	59.3978794	59.71775835	59.02762946	55.76977935	59.15315878	59.45868748	59.65440146	59.70190492
Sanctuary Bridge	40.04712236	42.07925446	40.63850976	40.19884872	39.32024177	40.67312587	40.48379911	40.15086406	41.55207356
Riverfort	58.68307201	58.54007481	58.31907417	58.31026813	58.34186576	59.36834568	59.17021771	59.24532262	58.39818803
Highfort	53.18968691	51.97202436	50.60528484	52.32782036	52.59518001	50.98477309	52.28644658	52.78158195	50.7909345
Shard	52.20504269	51.13522818	51.89711368	51.25329748	49.52323385	51.71394046	51.61957439	51.60626771	50.54249607
User 6									
Citadel Gate	55.60188616	57.013267	57.25028647	57.59098896	56.36240477	56.11587905	57.05641066	55.60080968	56.2367208
Overwatch	62.78371846	62.88483123	62.13270515	63.58941633	59.98323186	63.82394785	63.65527611	63.51622836	64.17952996
Sanctuary Bridge	57.5651512	58.85615108	58.13481102	58.82039065	57.91708276	59.82494545	58.31060128	57.59425832	59.13552211
Riverfort	50.13892538	50.18682385	50.54306398	51.03656788	50.50856331	51.17247163	50.67363329	50.08153145	49.78777071
Highfort	68.23816525	67.78790014	69.71566082	66.06688043	67.23832637	68.40526866	67.77032573	68.56529017	66.14946279
Shard	64.84543832	64.91899088	65.13263407	65.29763441	64.19424263	64.7518226	66.00489548	65.44175522	64.36396711
User 7									
Citadel Gate	48.90796385	50.00703665	49.27189416	50.05316503	48.73690669	48.37511169	50.70653925	47.71392947	51.84935444
Overwatch	46.21836487	48.11650689	48.34575207	46.16213795	46.6620457	47.32652313	47.41646012	47.34528193	47.37952631
Sanctuary Bridge	40.07024857	39.6617841	40.11530124	40.39803285	39.96056221	39.9247705	41.00192407	40.9573452	40.46466276
Riverfort	45.55115582	41.55175496	43.70416504	41.02689529	43.67712391	45.71667069	41.92435583	43.30631743	41.62925701
Highfort	46.30430543	45.09109886	44.67746635	42.84391293	43.53869363	44.28928356	43.81662151	46.15895038	43.46629211
Shard	37.26056583	41.48850835	37.57346818	41.07689761	40.9272519	40.68163545	40.95317617	37.80143054	40.78035389
User 8									
Citadel Gate	53.25751919	54.3340931	54.26432339	53.27815101	52.70702992	52.75904051	53.77050192	52.73689008	52.72456136
Overwatch	60.70866492	61.53333144	62.37758513	60.80443607	59.81499341	62.05398483	61.36995199	61.24904587	61.85319247
Sanctuary Bridge	54.52970974	55.68008838	55.1077754	55.0356729	55.33292856	55.18493458	54.65375031	53.70938188	54.51905284
Riverfort	41.11082411	41.13440099	42.52418496	41.1979352	42.07700192	42.59522037	41.80085033	41.0921398	41.65666409
Highfort	67.71262454	63.61049672	63.30701591	58.8587981	61.06177032	63.19178971	61.37407544	66.76914942	61.91792861
Shard	62.88917486	60.69198394	63.56774393	63.81061616	61.63497711	61.73857261	62.4051018	59.28604076	63.86029765
User 9									
Citadel Gate	43.86633511	43.45357919	42.30338385	42.56627639	44.05046579	44.05000726	43.32843892	44.15371809	43.41138807
Overwatch	43.81369576	45.63212636	44.53132393	43.63375878	45.4102172	44.38174162	44.29499863	43.93916888	43.31207
Sanctuary Bridge	40.10751149	42.07222858	39.96305164	40.96775706	37.76607371	40.65313228	39.46160887	39.38929416	40.72598442
Riverfort	45.00650618	43.53974114	45.02873005	45.15511903	44.87838177	43.93925054	45.1770914	44.09937926	43.77584432
Highfort	44.16092981	45.17579639	43.9987397	43.81195984	43.08722224	44.73665704	43.78391402	43.96075945	43.39699865
Shard	38.38295175	37.06509619	38.69136606	37.20333132	36.54287172	38.33913848	38.18630473	39.12041125	37.89962492
User 10									
Citadel Gate	32.16654365	31.15580312	32.31408159	31.45883167	31.12195066	32.43131533	30.18790118	32.71421514	30.81612308
Overwatch	40.67891452	39.70622871	41.43470201	40.2731495	40.64551473	41.05960652	39.95356115	39.8061101	40.86113308
Sanctuary Bridge	44.60711729	45.28179952	42.90562857	45.44601029	45.69644136	45.62681395	46.36452773	44.63035224	45.6481976
Riverfort	46.68698593	49.58058897	48.51753691	47.99263373	49.80427176	48.67864113	49.23087401	47.84520166	48.42325853
Highfort	38.64532131	40.14739887	41.14019567	36.52325028	38.4913845	40.3013977	38.0226065	37.5757466	38.29411679
Shard	49.80098594	48.32785268	50.12721856	51.93769311	51.00748694	50.08896572	51.564154	47.56176294	51.09209324

(t, t, ${ }^{\prime} \mathrm{t}^{\prime \prime}, \mathrm{k}_{1}, \mathrm{k}_{2}$)	$(2,20,50,16,7)$	$(2,20,50,10,3)$	$(2,20,50,16,6)$	$(2,20,50,24,5)$	$(2,20,50,22,5)$	$(2,20,50,22,8)$	$(2,20,50,22,9)$	$(2,20,50,23,7)$	$(2,20,50,21,7)$	Mean
User 1										
Citadel Gate	57.05986242	56.16325843	57.11946855	57.91690017	55.3959998	55.58018826	54.62874807	56.22327168	57.03205464	55.93614619
Overwatch	42.07769897	43.61402867	43.98067806	42.81727819	43.43017241	43.57559748	43.30682805	43.77824929	42.91221446	43.24594171
Sanctuary Bridge	50.38212228	51.77525693	52.0558554	52.10785406	52.12013034	52.06593446	52.69378619	52.77217388	52.46254153	51.64931034
Riverfort	40.04904816	41.59187537	38.52671905	40.13527582	39.65169695	41.58047176	41.23001483	40.11731811	41.79240955	40.50061753
Highfort	50.2517357	50.31850804	51.11173025	50.13947077	51.18542586	50.77410606	50.63143048	52.13556932	50.25625441	50.69491483
Shard	66.50586871	67.21131421	65.84748871	66.84726248	66.19548928	67.04660342	66.33540414	67.35979746	65.50130013	66.92866334
User 2										
Citadel Gate	35.48496102	36.00025325	35.71615918	36.77763843	35.86091742	36.01120797	37.65429493	38.6298417	37.14148327	36.88532712
Overwatch	46.34627176	47.53046372	45.01332767	47.32569853	46.27037757	45.93020003	47.43594418	47.54968421	45.77580698	46.54007587
Sanctuary Bridge	40.42603092	41.95613451	42.51232212	41.73597086	42.10466943	41.84924605	41.98220158	41.13817108	42.46692826	41.8038284
Riverfort	46.01401531	43.52642833	47.18389559	45.69478899	44.10519696	45.34195085	44.24648756	44.30824062	45.35643613	44.77045954
Highfort	41.4535983	40.55792284	38.52951843	37.75372359	40.3278263	39.71730339	41.45195345	39.57629636	39.42631767	39.61102388
Shard	48.42278078	49.80731776	49.23181522	50.05604175	49.02320075	51.13108202	49.04163451	49.34901897	49.23546231	48.99879763
User 3										
Citadel Gate	47.79509264	49.03777041	47.61471374	48.78546398	46.89125216	46.80397152	46.04157981	47.90503286	47.85806526	47.58011235
Overwatch	56.49096995	56.78388312	52.86092623	56.49332861	56.41081024	55.94111763	57.01005027	57.09620245	55.02401382	56.1254381
Sanctuary Bridge	53.79068664	56.18203268	55.60019355	54.38864767	55.65886076	55.15126142	54.00139555	54.31386743	56.98548625	54.86283063
Riverfort	46.83743581	47.54260939	44.88547864	47.06633611	46.60590505	46.4283886	47.30947416	46.93608349	47.01349742	46.61461345
Highfort	47.10327289	46.80179849	45.510319	45.73374599	47.12815342	47.00438074	47.20211127	48.06206527	46.58347209	46.84625031
Shard	48.07868327	48.34816022	48.66424174	47.50964023	49.55861037	48.1829424	48.49165349	47.0870408	47.94369017	47.99856984
User 4										
Citadel Gate	59.26709868	58.10812593	60.5391743	58.51234387	57.30071734	58.89668813	57.87167427	59.83185111	58.58945271	58.8325276
Overwatch	45.98495648	51.11218183	58.84386493	49.22643195	49.00424654	47.47793495	50.38760662	49.78407604	49.64142465	50.08660388
Sanctuary Bridge	56.36990254	57.4924393	56.72195714	56.87993731	56.29653367	56.14553429	55.35488862	56.29264411	58.02975458	56.27022311
Riverfort	50.03324255	51.65894779	51.29544427	50.19891883	51.94784369	51.50137828	50.88946563	51.95516393	50.16348511	51.2371837
Highfort	58.55569435	58.18302073	58.32710493	59.90819469	61.46267397	61.26088365	59.26348646	61.09709919	60.48353447	60.17163007
Shard	67.19603247	69.14434772	67.8085786	68.95123101	68.10439104	69.81335269	69.0159003	68.66623743	68.67355949	68.33157806
User 5										
Citadel Gate	55.41437144	54.75730037	54.89722881	55.78938392	53.76091957	53.88205112	54.75306603	54.72968189	54.22934866	54.78968686
Overwatch	59.37702697	59.74765945	56.37275358	59.42365576	59.95404166	59.11708026	59.13498474	60.26948255	58.45693466	59.02237824
Sanctuary Bridge	40.31827446	42.25623813	41.75536878	41.02341141	41.71728496	40.40680731	39.83822898	40.64385605	41.53631816	40.81331266
Riverfort	58.29540661	58.20543075	57.80786402	58.85623881	58.47457562	58.76902024	58.45828472	58.50920547	58.23828698	58.55504123
Highfort	53.78125894	51.32925652	51.71392752	51.58173632	51.6589889	50.94826073	52.23988144	52.39488382	50.37164235	51.86408718
Shard	51.62510323	51.15113465	50.96925362	50.92910994	52.31243225	52.98538897	51.97645203	52.03338669	51.0648812	51.47462984
User 6										
Citadel Gate	56.33017825	58.50809667	55.27992088	57.09814179	55.53003734	56.18603518	56.57852931	56.39298281	56.32526175	56.5032132
Overwatch	63.50001481	63.04522016	59.45256934	63.13584007	62.06925983	61.71810163	62.49900033	63.14326809	61.29386649	62.57811256
Sanctuary Bridge	57.02126888	59.45205409	59.32019351	58.04244262	58.89020654	59.14339568	59.56929251	59.05713345	59.70843567	58.68685205
Riverfort	50.04867153	50.82496372	50.45816392	50.08074839	51.65691594	51.32834528	50.12886907	50.73655607	50.53885306	50.55174658
Highfort	67.93666249	68.47024076	67.17117008	66.92555988	65.75261337	66.43783998	66.8325187	69.44529549	65.53864989	67.46932395
Shard	63.5027404	65.61251067	64.38021927	64.92507958	64.26104629	65.68343055	64.4762163	65.28252966	64.804554	64.88220597
User 7										
Citadel Gate	49.90411306	51.36822594	49.7518041	51.56631289	49.75924267	50.69643516	49.19581203	48.4658349	51.09626423	49.85699701
Overwatch	47.45315059	48.96416033	45.43224946	45.92348533	48.07391412	48.73000405	47.26426713	47.22283381	48.39307151	47.35720752
Sanctuary Bridge	39.90594342	40.93499109	39.3767704	40.09466462	40.32481507	39.72016819	40.48463966	40.47758611	39.7970476	40.20395876
Riverfort	45.23828694	43.18186802	45.02409739	44.23826738	43.63262699	45.13060172	43.10114583	43.24444226	45.54242678	43.69008107
Highfort	44.99119061	44.86599822	44.90300716	43.891728	44.04416704	43.24261084	44.93710883	45.23941897	44.53996818	44.49121237
Shard	40.10469413	40.06718651	40.33184944	37.98222601	38.45167909	38.65580227	38.34216313	40.0548133	39.38739942	39.55117229
User 8										
Citadel Gate	54.31004737	54.04113778	53.82098708	53.88668726	53.91917903	53.64846087	53.83922337	54.64708369	52.41478254	53.57553886
Overwatch	62.49272114	60.8965038	59.42665068	60.71963035	61.09671391	61.81075711	61.58251819	62.26014121	60.06478658	61.22864495
Sanctuary Bridge	54.61900413	56.9044745	55.63166067	54.36523127	56.02781557	56.11914601	54.41264373	55.39779339	56.87093003	55.22788855
Riverfort	40.37536244	43.39600531	42.32009494	40.22746342	42.85543869	41.7916437	40.93469329	41.2710446	41.05841004	41.6344099
Highfort	65.45525289	65.63853857	63.71524001	62.51025404	61.49772551	61.61824775	63.34020968	64.37077629	60.63651121	63.14368915
Shard	63.6964454	62.43726526	63.80139097	64.29061962	64.65272312	63.85018483	64.01443585	63.95474675	63.25915196	62.99119292
User 9										
Citadel Gate	44.31029668	44.15934085	44.4046208	43.4722917	43.5868657	43.07611605	43.11783267	42.69471059	45.00763206	43.61184999
Overwatch	44.85659968	45.08705749	42.03601695	43.74303623	44.8798576	46.42431333	43.86084897	44.43018936	45.63537205	44.43902182
Sanctuary Bridge	40.51754258	41.5399234	41.05800176	41.83058154	41.22977052	40.09268523	39.07777909	41.33711213	41.94220261	40.54068006
Riverfort	44.7782099	44.66799264	44.94566134	44.2771203	45.98680406	44.27303694	44.45259271	44.79545141	44.52408565	44.62783326
Highfort	44.65743524	44.52227282	43.90463861	42.71735733	44.30120045	43.74548489	44.76895716	45.25408887	43.92150706	44.10588442
Shard	37.36649621	37.85825831	37.78830697	38.30452977	38.0984948	39.12403935	38.01290882	37.81475824	38.02160311	37.99002733
User 10										
Citadel Gate	32.69468677	30.90081003	31.25642992	32.52693435	31.29813749	30.33793763	33.00324981	33.39426557	32.98227786	31.82008305
Overwatch	41.04653388	40.65337917	37.76001519	40.98015272	40.49935586	39.13304394	40.27032715	41.21180612	39.27919213	40.29181814
Sanctuary Bridge	43.37415836	43.17660762	46.22577521	45.43538346	44.65462367	45.32648253	47.32250895	45.62514159	45.37814791	45.15142877
Riverfort	49.02145087	48.44746338	46.97332512	49.32968343	47.28341271	49.22865638	48.87308024	47.73021561	50.51544179	48.56459568
Highfort	39.70939036	39.89078219	39.85941674	39.18278707	37.24890941	37.35955762	38.99801577	41.28699289	37.68523771	38.90902822
Shard	50.36049819	50.95159164	50.72389964	51.46597853	50.49315911	53.10563163	51.93382871	51.65432393	50.75882077	50.71977474

Figure .14: Heat Map Accuracy Results (method 2).
$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{k}_{1}, \mathrm{~K}_{2}\right)(2,20,60,20,6)(2,20,50,22,7)(4,10,50,22,4)(6,10,40,12,7)(6,10,40,19,6)(6,16,50,12,3)(4,20,40,24,5)(6,10,60,20,10)(6,10,40,12,3)$
User 1

Citadel Gate	59.61290924	59.59146789	60.25832805	58.91597572	58.65664841	57.36731557	58.67477135	58.55675112	59.32670291
Overwatch	50.66309486	51.23781486	50.04052114	48.17223236	49.05188605	50.11641779	47.98418293	49.52726375	46.88428607
Sanctuary Bridge	50.73128472	52.98408728	51.85924912	53.52226479	54.14733852	53.012821	54.08911125	50.85416535	54.114018
Riverfort	38.55519567	39.9209262	40.57976579	40.21633171	38.37696711	39.88397757	38.73677718	39.21884529	38.01256271
Highfort	47.5635899	48.60464889	49.27432653	49.68493429	49.41948804	49.36611617	49.77492306	47.85895091	50.03284165
Shard	60.90016935	60.84803083	60.35747982	60.84751715	60.30723772	61.13231976	60.84004255	61.22033916	60.47533838
User 2									
Citadel Gate	31.2302042	31.49650109	31.37807207	31.57988577	31.42424438	32.01388814	31.55714821	31.13652732	31.37614894
Overwatch	49.497472	48.73799314	47.30029714	45.68708714	46.08850633	47.93993287	46.16730438	49.24180807	45.82046582
Sanctuary Bridge	39.87827931	40.86646368	40.5246169	41.4949854	41.0337156	41.53463535	41.86560353	39.73484608	41.70289349
Riverfort	64.78911149	60.51522013	60.04957888	59.53604695	59.18441766	57.69920288	59.35660762	63.18091999	59.12559856
Highfort	47.48261895	42.75822043	42.66806478	40.440077	40.05359596	43.56100797	39.36908228	45.693545	38.79297437
Shard	39.48136778	41.02094717	40.8308995	42.2907339	42.6103862	41.81404409	42.27686917	39.38124725	41.9817723
User 3									
Citadel Gate	52.89380014	53.22105293	54.05928617	48.8669729	49.86095352	51.15351127	47.87547171	50.18587036	48.33879983
Overwatch	51.46629486	50.728064	49.79306057	49.76805592	49.73707731	49.88922875	50.02853473	52.22663107	50.67605312
Sanctuary Bridge	51.98260097	54.91637669	54.09408161	54.30774131	54.23922251	54.50186621	54.52337065	52.10236427	54.4750478
Riverfort	47.25751415	47.76315271	47.34720479	46.28977614	45.91012685	45.96918468	45.79320269	45.3759508	45.96140125
Highfort	52.3896477	50.5708893	50.48558198	49.94634917	49.30682759	51.04444125	49.32745158	51.56186992	49.08602684
Shard	59.00237752	58.73911556	58.66276252	57.7943565	57.62283042	56.74175478	57.80556842	57.31138527	57.26159044
User 4									
Citadel Gate	63.57544422	63.70379129	64.1176694	59.16953197	61.16229406	62.46437849	59.23816122	61.38567543	59.38756244
Overwatch	70.297216	69.02083657	67.02946743	64.95642991	65.46339065	67.8465942	65.45129394	69.06222572	63.49816004
Sanctuary Bridge	55.12852625	55.87523561	56.22687606	56.35416993	56.82179867	55.83642099	55.67734003	55.32455528	55.9945628
Riverfort	53.81339897	54.32797117	53.58130652	53.63171764	53.28411591	53.69646704	52.7547341	53.07805086	52.65838189
Highfort	53.35792408	59.47078103	59.32895529	62.36705909	61.85862451	59.6836946	62.32209168	53.67181213	62.0948748
Shard	65.37525548	65.19307934	65.35267055	65.95999917	65.718176	66.33274521	66.33034266	64.61564348	65.64296231
User 5									
Citadel Gate	59.27261392	59.87019102	60.54053396	57.10573802	57.49095261	58.03621093	56.40409489	58.27623644	56.52206109
Overwatch	62.880768	62.12392229	61.54673371	61.13208168	61.50399938	61.72009097	61.4087067	61.98537156	60.26557564
Sanctuary Bridge	40.06680501	41.31140351	41.28604181	42.26361516	42.49198435	41.24961658	42.19460829	40.65587081	42.23881977
Riverfort	61.07047994	60.47570292	60.35717274	59.41658437	58.94140869	59.37658761	58.49923468	60.7667182	58.36513372
Highfort	54.34195375	53.841961	53.49923063	53.44225602	53.34970506	53.5689936	53.02325876	54.72506645	53.13594533
Shard	50.26334537	50.91186506	50.39409372	50.96741955	51.22075667	50.76959269	51.34033244	50.31482368	51.00092181
User 6									
Citadel Gate	58.86939915	60.06925439	60.15185229	56.41297665	56.35520234	59.19318349	55.21698465	58.04051067	55.06092805
Overwatch	59.35605029	59.97950171	59.846656	59.56814826	59.60939196	59.71035395	59.88251482	59.83230325	59.89061736
Sanctuary Bridge	57.62985383	61.5577425	59.81883263	60.8080398	60.70971293	60.60570149	61.38755022	56.89449121	60.80561119
Riverfort	58.28329806	56.5108884	55.52545643	54.39729209	55.41955078	54.82606993	54.43064326	55.25567509	54.37319296
Highfort	68.76308365	62.22992811	62.38505451	60.40807793	60.35517634	61.88092748	60.02959408	68.61324164	60.26119491
Shard	65.41584844	65.77080744	65.64953597	65.25830361	65.13505562	65.66009719	66.01065299	64.61967602	65.20564767
User 7									
Citadel Gate	54.0107995	56.00654993	56.50586376	54.0492608	54.48701834	53.58085472	54.14738418	53.71953549	54.45974336
Overwatch	52.24290743	54.22442057	54.58565486	56.60841779	56.50144924	54.30695099	56.35282124	52.12147089	54.4667779
Sanctuary Bridge	38.46022238	40.21770335	39.90945256	40.88778534	40.56602109	39.7540179	41.06017249	38.34103905	41.62941885
Riverfort	66.72555255	62.07806962	62.98418418	62.9134683	62.03334433	59.67162672	62.28138308	64.45254354	61.81011827
Highfort	49.14709332	48.54254333	48.66269505	47.28022287	47.51161821	48.34842228	46.86653889	48.56810788	47.08761225
Shard	39.181417	40.73442727	40.13691214	39.44419279	39.96214162	40.23031137	39.77224134	40.1694497	39.51907235
User 8									
Citadel Gate	57.23009671	57.16128662	57.65425118	56.32324086	56.31309346	56.21266487	56.44527047	56.68967741	55.8606044
Overwatch	57.10999771	56.655872	56.13359543	57.5969207	57.42839594	55.97014843	57.66536382	57.78000658	57.84171333
Sanctuary Bridge	54.4366612	56.29657822	55.60018486	55.38501538	56.38792528	55.20229622	56.50957821	54.14805484	56.61161204
Riverfort	51.2988826	52.08462629	51.81133246	50.66224019	50.98072881	49.89752571	50.90263058	49.7215131	49.87387593
Highfort	68.93817442	57.50800339	58.33343494	54.60477475	54.67235422	57.68428915	54.08695822	69.69334992	53.71934269
Shard	42.68919607	46.3022699	45.46916098	47.44459321	48.00853355	47.50090304	47.93851801	43.7722054	47.49748274
User 9									
Citadel Gate	47.49810633	47.34371719	47.47421413	45.90656643	45.57666096	45.54328937	46.00727168	46.14677144	46.55096015
Overwatch	46.14356114	48.24980114	49.62018743	52.29849464	51.98302939	48.21845816	52.0058514	46.68896284	51.2616763
Sanctuary Bridge	40.85976566	40.97952008	40.75232667	40.96872012	41.41496165	40.99624215	40.77574594	40.8179355	41.37129704
Riverfort	52.90553778	51.61311727	51.48353688	51.75911206	51.22342274	50.85834891	50.84319708	51.93793444	50.75101316
Highfort	44.56831832	43.64008623	43.71545832	43.00705666	42.75070839	44.30806176	42.78164855	44.34284878	42.57414499
Shard	43.82302937	45.26622342	44.84614903	44.63637615	44.84902906	45.74987591	44.68042295	43.66661403	44.47173455
User 10									
Citadel Gate	25.04249929	24.30651374	24.01926281	28.3083064	26.81506059	24.64981887	28.30327513	27.67935447	27.54077025
Overwatch	33.67074743	32.78813257	31.80732343	30.45400478	30.63552887	31.81212788	30.60550123	34.28869222	31.65274394
Sanctuary Bridge	40.33630869	43.4446861	42.10473852	42.93533031	42.35221973	43.02195082	43.644055	39.80132486	43.46110139
Riverfort	35.62138321	36.74553044	36.66492412	37.25644749	35.07783789	38.30678826	36.06117555	39.61410118	36.17407742
Highfort	31.14895153	27.07944869	27.95912963	27.69775572	27.36894287	27.3318527	27.73175121	33.61590948	27.9544924
Shard	28.88296781	30.57866242	30.1094246	31.90244635	32.42517618	31.6321258	32.58268577	28.72661734	32.11046737

(t, t, ${ }^{\prime}$ '", $\mathrm{k}_{1}, \mathrm{k}_{2}$)	(2, 20, 50, 16, 7)	$(2,20,50,10,3)$	$(2,20,50,16,6)$	20, 50, 24, 5)	, 20, 50, 22,	($0,50,22,8)$	(20,50,22, 9)	(20, 50, 23, 7)	20,50, 21, 7)	Mean
User 1										
Citadel Gate	57.57013396	56.71315396	58.21350929	58.21350973	57.93993988	57.38775364	57.54797608	57.64017672	56.97807494	58.28694991
Overwatch	49.94376926	49.84833829	49.08536112	49.19754971	49.56688085	50.05304589	48.76403549	49.45651168	49.16550781	49.37548333
Sanctuary Bridge	52.9568205	53.39329956	52.98014517	52.64447173	53.36564236	53.23734272	53.13079175	52.56565242	52.85979411	52.91379446
Riverfort	39.20478464	39.94932287	37.61351487	38.9553826	39.03932986	39.29442689	38.62844935	38.80522888	39.10016146	39.11621948
Highfort	48.90230903	49.37214291	49.08052587	49.15714786	49.5003778	48.91765412	49.68355594	49.25713366	49.01544397	49.13700614
Shard	60.66375228	61.41383429	60.95533171	61.18880995	61.39311377	60.87728568	60.52178556	60.76608063	60.62748337	60.85199733
User 2										
Citadel Gate	32.3347806	33.27917101	32.29590773	32.29590773	32.56856269	32.8982862	32.83254326	32.6542906	33.03673765	32.07715598
Overwatch	49.20145108	47.51005099	47.44918694	47.08256914	47.43251321	48.83452645	47.6101285	48.16092906	47.41813295	47.62113085
Sanctuary Bridge	41.22639689	41.36712853	41.03701824	40.80724234	41.10353327	41.46786164	41.03016738	40.8627436	41.34841235	41.04925242
Riverfort	57.90409057	57.09022197	58.24413007	58.15882897	58.39380057	57.83258021	58.27815352	57.86529531	57.48099945	59.14915582
Highfort	43.79000147	43.5202791	43.14543721	43.06401008	43.19988988	43.39625862	43.44605585	43.82946035	43.43004855	42.86892377
Shard	42.31813163	42.03081695	41.93492252	42.65123918	42.43233052	42.37203534	41.42183811	42.07685666	41.82885983	41.70862767
User 3										
Citadel Gate	50.91475482	50.84199551	51.52294446	51.52294446	50.99887849	51.71009757	50.86756459	50.96063951	51.42721804	50.95681979
Overwatch	52.09839552	50.87675797	50.97473081	50.87189943	51.06367711	51.17185514	51.27802184	51.43429161	50.62669428	50.81718467
Sanctuary Bridge	55.13669689	54.97193501	54.650198	54.12902466	54.23686238	54.79377622	54.30812589	54.32006883	54.92047267	54.25610181
Riverfort	46.62602018	46.86356443	45.70623271	46.78129406	46.79802513	46.47073649	46.56814043	46.08686852	46.48765456	46.44755837
Highfort	50.67971313	51.07261078	50.32329839	50.08485538	50.4730471	50.65460673	51.05413558	51.19923524	50.66065458	50.55118013
Shard	57.1224389	57.81936927	57.25027842	56.33884248	56.54956633	57.36646448	57.53500788	57.63655551	57.44845565	57.55604002
User 4										
Citadel Gate	62.38216218	63.51321273	63.0261818	63.02617218	62.596495	63.22928692	63.46122894	62.55077449	63.28674571	62.2931538
Overwatch	68.94738822	66.99061012	67.62093266	66.300928	67.03625556	69.09251488	67.0991136	67.86367377	66.9146381	67.24953719
Sanctuary Bridge	56.8193987	56.44956344	55.76804922	56.11501482	55.34735526	55.7693179	55.53156745	56.32000948	55.4953603	55.93639568
Riverfort	53.93061285	54.10375328	53.3289032	53.63735831	52.88739541	53.60685982	53.3858846	53.78373789	53.37628967	53.49260773
Highfort	59.28862989	59.60039165	59.39625476	59.30732342	59.87294314	59.45590799	60.14417297	59.7819457	59.71298069	59.48424263
Shard	65.42241658	66.0785627	66.15237023	65.96594379	65.87415135	65.59681442	65.34214861	65.54557551	65.27732382	65.65423229
User 5										
Citadel Gate	58.41758884	58.23371207	58.58905646	58.58904837	58.5522794	58.91444603	58.38476174	58.5862473	58.882542	58.37046195
Overwatch	61.70497678	61.24963198	61.17825829	61.54900114	61.30728018	61.13610723	61.91386475	61.57560705	60.94503797	61.50705641
Sanctuary Bridge	41.85160927	41.91855516	41.55634294	41.13564897	41.14790079	41.67987603	41.63623347	41.61055278	42.05270407	41.57489938
Riverfort	59.56526704	59.44572135	58.75505282	59.70499793	59.38983495	59.54737785	58.80459159	59.46200906	59.30532803	59.51384464
Highfort	52.69305975	53.69555113	53.50832913	52.83134538	53.19637945	52.96037926	53.27200942	53.23524434	52.88158161	53.400125
Shard	51.08134444	50.97480767	51.22879726	51.28137879	50.91810231	51.16202511	50.37601462	51.09011658	50.88516549	50.89893907
User 6										
Citadel Gate	59.54824774	59.70607015	59.61353986	59.61353986	59.735552	59.8440343	59.34682733	59.40457277	60.39966032	58.69901867
Overwatch	59.6650494	59.69679211	59.04431543	59.09664914	59.22125574	59.50108341	59.46872443	59.31397479	59.17522663	59.54770048
Sanctuary Bridge	61.42589906	61.03886689	60.44334895	60.98101512	60.84334533	61.45133257	61.38434631	61.03912442	61.21212121	60.55760754
Riverfort	55.56060054	54.7220913	55.74702935	55.55523052	55.13291374	55.24981049	55.4111856	55.70666044	55.02031976	55.39599493
Highfort	61.35088843	61.89263583	61.93161605	61.77932316	61.86312699	61.54809383	62.22455574	61.38287044	61.67918588	62.25436528
Shard	65.30222398	66.09645459	65.66353417	65.52551966	65.71210649	65.47368312	65.55005249	65.65318985	65.33079731	65.5018437
User 7										
Citadel Gate	54.23201627	52.56712065	54.86359451	54.86359451	53.73816767	53.84709428	53.9145364	54.42297205	54.41754005	54.32409147
Overwatch	52.98556934	52.09348557	52.39810589	53.13470171	52.09067821	52.55759438	52.79614535	52.24189799	51.67861175	53.52153673
Sanctuary Bridge	40.88423728	40.05773026	40.00123243	39.66688113	39.71364102	40.41532927	40.26968491	39.98832244	40.74648398	40.1427431
Riverfort	58.66543933	58.93894399	58.92943229	59.45893802	59.90535785	58.97163728	60.13036416	58.66028255	58.70617075	60.9620476
Highfort	47.54995177	48.14502663	47.71476856	47.06033979	47.67686327	48.04181796	47.4044915	47.9559775	47.57853305	47.8412569
Shard	40.95970471	40.3030196	40.74662662	40.49531687	40.62024677	41.07590993	40.44784063	40.95161109	41.07297337	40.32352307
User 8										
Citadel Gate	56.4509114	56.18170678	55.94877583	55.94876815	55.98307338	56.68797185	56.21743757	56.02661536	55.85392369	56.39940944
Overwatch	56.86361478	56.14938141	55.51892834	55.75992686	55.72734818	56.07047185	56.3679834	56.00931202	55.57387166	56.56793625
Sanctuary Bridge	55.96345591	56.15943669	55.66314759	55.59467517	55.48498881	56.29520349	56.24927731	55.6125499	56.09181528	55.76069202
Riverfort	49.14792026	49.90612786	49.51187916	49.12827044	48.78317138	49.00930329	49.78617207	49.69509381	49.38826101	50.08830861
Highfort	57.91270001	57.76960028	57.58278525	58.20972103	57.85819315	57.68651158	57.82946523	57.53235966	58.06260014	58.31581211
Shard	47.45215382	47.6170985	47.91249035	48.28430144	48.07776012	48.34308084	46.62464442	47.79036059	47.3179253	47.00237102
User 9										
Citadel Gate	45.91361562	45.34274975	46.13792832	46.13792832	45.96651223	45.70114695	45.90525535	45.89483566	45.29284417	46.13002078
Overwatch	47.9706398	47.06061153	47.26070329	47.9136	47.17665689	47.0733518	47.55298539	46.96618609	46.57862135	48.44574326
Sanctuary Bridge	41.19495609	41.79386069	40.60526864	40.97757157	40.83355837	40.83134725	41.02911618	40.81643761	41.03632014	41.00305285
Riverfort	50.63643613	50.34226913	51.15615705	50.78466842	50.86962085	50.33745828	51.45375429	50.47559543	50.69668032	51.11821446
Highfort	44.02366143	44.32979534	43.95485616	43.93171374	43.86412149	44.11953285	43.896055	44.19358001	44.14790898	43.7860865
Shard	45.12356235	45.52953234	45.22541867	45.56204049	45.605419	45.26495975	45.31518423	44.84117708	44.79948278	44.95867951
User 10										
Citadel Gate	25.04683142	24.66195846	24.87909505	24.87909505	24.99682178	24.56198963	24.46561428	24.64617843	24.59739078	25.52221313
Overwatch	33.00851405	32.34354794	32.83988378	32.202752	32.46682463	33.10703347	33.13328061	33.21380289	32.29500208	32.35141354
Sanctuary Bridge	42.87297804	42.77271615	43.2465134	42.88613606	42.78601916	42.8407536	43.12004422	42.39560887	42.53856749	42.58672513
Riverfort	38.14942653	38.50518848	36.80294879	38.17819832	38.56668125	38.41749609	37.27328037	37.74732676	37.8846381	37.39152501
Highfort	27.06728202	27.43791532	27.53417368	28.4220087	28.12750617	27.72594455	27.96282522	27.48387443	27.81833035	28.19267193
Shard	32.10742444	31.81260342	32.65479572	33.19829897	33.06097351	32.32136411	31.06353072	31.95543598	31.94510834	31.61500605

Figure .15: Playthrough Prediction Training Accuracies (Method 1).

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right)$	$(2,20,60,20,6)$	$(2,20,50,22,7)$	$(4,10,50,22,4)$	$(6,10,40,12,7)$	$(6,10,40,19,6)$
Metric 1					
Citadel Gate	0.460240964	0.39545611	0.378037866	0.343958692	0.367091222
Overwatch	0.376829268	0.324926829	0.376878049	0.361073171	0.300195122
Sanctuary Bridge	0.307270502	0.34374541	0.319608323	0.313537332	0.324504284
Riverfort	0.345054945	0.366637363	0.389846154	0.317758242	0.347296703
Highfort	0.327779006	0.325392265	0.325922652	0.283668508	0.284552486
The Shard	0.373269231	0.379903846	0.404951923	0.359663462	0.377307692
Metric 2					
Citadel Gate	0.464027539	0.399380379	0.386299484	0.351876076	0.376798623
Overwatch	0.386	0.352731707	0.38897561	0.371902439	0.311560976
Sanctuary Bridge	0.318824969	0.374296206	0.338017136	0.330575275	0.342129743
Riverfort	0.354241758	0.390461538	0.394725275	0.328483516	0.359912088
Highfort	0.336353591	0.347535912	0.329767956	0.307933702	0.290961326
The Shard	0.382355769	0.403028846	0.411875	0.383413462	0.390432692
Metric 3					
Citadel Gate	0.460240964	0.39545611	0.378037866	0.343958692	0.367091222
Overwatch	0.376829268	0.324926829	0.376878049	0.361073171	0.300195122
Sanctuary Bridge	0.307270502	0.34374541	0.319608323	0.313537332	0.324504284
Riverfort	0.345054945	0.366637363	0.389846154	0.317758242	0.347296703
Highfort	0.327779006	0.325392265	0.325922652	0.283668508	0.284552486
The Shard	0.373269231	0.379903846	0.404951923	0.359663462	0.377307692
Metric 4					
Citadel Gate	0.498864028	0.436626506	0.410464716	0.383270224	0.393459552
Overwatch	0.439707317	0.429853659	0.413268293	0.401756098	0.334780488
Sanctuary Bridge	0.394222766	0.444014688	0.389522644	0.383059976	0.385312118
Riverfort	0.420747253	0.44778022	0.415912088	0.34967033	0.385450549
Highfort	0.393723757	0.40481768	0.350497238	0.360928177	0.317966851
The Shard	0.444134615	0.457740385	0.441730769	0.431538462	0.422644231

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{k}_{1}, \mathrm{~K}_{2}\right) \quad(6,16,50,12,3)(4,20,40,24,5)(6,10,60,20,10)(6,10,40,12,3)(2,20,50,16,7)$

Metric 1

Citadel Gate	0.481445783	0.508364888	0.449913941	0.422650602	0.401858864
Overwatch	0.36702439	0.394146341	0.347756098	0.318341463	0.331365854
Sanctuary Bridge	0.345948592	0.330917993	0.365385557	0.302227662	0.362643819
Riverfort	0.39578022	0.407120879	0.316703297	0.368131868	0.358461538
Highfort	0.30638674	0.335248619	0.359160221	0.240353591	0.317348066
The Shard	0.455913462	0.474326923	0.416971154	0.369951923	0.369423077

Metric 2

Citadel Gate	0.4832358	0.514010327	0.459414802	0.428709122	0.408674699
Overwatch	0.378487805	0.419609756	0.349073171	0.324878049	0.35995122
Sanctuary Bridge	0.357356181	0.360195838	0.376891065	0.317307222	0.384577723
Riverfort	0.40443956	0.425494505	0.324659341	0.373406593	0.383472527
Highfort	0.322740331	0.34559116	0.36238674	0.252861878	0.338828729
The Shard	0.466634615	0.483798077	0.422644231	0.380721154	0.394759615
Metric 3				0.422650602	0.401858864
Citadel Gate	0.481445783	0.508364888	0.449913941	0.318341463	0.331365854
Overwatch	0.36702439	0.394146341	0.347756098	0.3183	
Sanctuary Bridge	0.345948592	0.330917993	0.365385557	0.302227662	0.362643819
Riverfort	0.39578022	0.407120879	0.316703297	0.368131868	0.358461538
Highfort	0.30638674	0.335248619	0.359160221	0.240353591	0.317348066
The Shard	0.455913462	0.474326923	0.416971154	0.369951923	0.369423077

Metric 4

Citadel Gate	0.489225473	0.527160069	0.491566265	0.442134251	0.435731497
Overwatch	0.402585366	0.454634146	0.389609756	0.340390244	0.428682927
Sanctuary Bridge	0.391627907	0.418898409	0.425556916	0.348151775	0.444455324
Riverfort	0.427604396	0.457142857	0.365010989	0.382769231	0.433142857
Highfort	0.359027624	0.386563536	0.394342541	0.277834254	0.396729282
The Shard	0.497548077	0.503605769	0.457596154	0.405048077	0.450384615

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,50,10,3)(2,20,50,16,6)(2,20,50,24,5)(2,20,50,22,5)(2,20,50,22,8)$

Metric 1

Citadel Gate	0.51524957	0.374595525	0.350774527	0.366678141	0.314836489
Overwatch	0.40004878	0.319853659	0.339268293	0.325756098	0.334634146
Sanctuary Bridge	0.29625459	0.30247246	0.324700122	0.341346389	0.322301102
Riverfort	0.390945055	0.330813187	0.358241758	0.356747253	0.334021978
Highfort	0.299491713	0.36	0.343027624	0.339049724	0.316022099
The Shard	0.400673077	0.379086538	0.399423077	0.416730769	0.351875

Metric 2

Citadel Gate	0.51848537	0.38939759	0.376179002	0.37858864	0.334802065
Overwatch	0.412487805	0.337609756	0.358390244	0.34497561	0.354585366
Sanctuary Bridge	0.31373317	0.324700122	0.344430845	0.366511628	0.342031824
Riverfort	0.406285714	0.343296703	0.375120879	0.375164835	0.361802198
Highfort	0.315270718	0.370077348	0.362519337	0.354209945	0.339668508
The Shard	0.401923077	0.389711538	0.422451923	0.435865385	0.368509615

Metric 3

Citadel Gate	0.51524957	0.374595525	0.350774527	0.366678141	0.314836489
Overwatch	0.40004878	0.319853659	0.339268293	0.325756098	0.334634146
Sanctuary Bridge	0.29625459	0.30247246	0.324700122	0.341346389	0.322301102
Riverfort	0.390945055	0.330813187	0.358241758	0.356747253	0.334021978
Highfort	0.299491713	0.36	0.343027624	0.339049724	0.316022099
The Shard	0.400673077	0.379086538	0.399423077	0.416730769	0.351875

Metric 4

Citadel Gate	0.537142857	0.418932874	0.426987952	0.416179002	0.387607573
Overwatch	0.441073171	0.386390244	0.42702439	0.410926829	0.432634146
Sanctuary Bridge	0.362350061	0.383353733	0.400979192	0.41747858	0.410820073
Riverfort	0.428395604	0.397406593	0.42021978	0.418417582	0.421274725
Highfort	0.34921547	0.411668508	0.406232044	0.402033149	0.392265193
The Shard	0.425432692	0.427403846	0.465384615	0.472355769	0.421538462

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,50,22,9)(2,20,50,23,7)(2,20,50,21,7) \quad$ Mean

Metric 1

Citadel Gate	0.377280551	0.406609294	0.383614458	0.405480972
Overwatch	0.324634146	0.286878049	0.301268293	0.340604336
Sanctuary Bridge	0.327637699	0.338017136	0.334932681	0.327969536
Riverfort	0.353846154	0.361274725	0.363824176	0.359028083
Highfort	0.332552486	0.324640884	0.326364641	0.319275629
The Shard	0.346826923	0.371682692	0.393846154	0.391212607

Metric 2

Citadel Gate	0.40626506	0.420240964	0.406471601	0.416825397
Overwatch	0.356780488	0.308439024	0.330878049	0.358184282
Sanctuary Bridge	0.352117503	0.368518972	0.360979192	0.348510812
Riverfort	0.385230769	0.383032967	0.38189011	0.375062271
Highfort	0.367116022	0.34439779	0.349790055	0.335445058
The Shard	0.376826923	0.394423077	0.414519231	0.406883013
Metric 3				
Citadel Gate	0.377280551	0.406609294	0.383614458	0.405480972
Overwatch	0.324634146	0.286878049	0.301268293	0.340604336
Sanctuary Bridge	0.327637699	0.338017136	0.334932681	0.327969536
Riverfort	0.353846154	0.361274725	0.363824176	0.359028083
Highfort	0.332552486	0.324640884	0.326364641	0.319275629
The Shard	0.346826923	0.371682692	0.393846154	0.391212607

Metric 4

Citadel Gate	0.459690189	0.472289157	0.460585198	0.449328744
Overwatch	0.431560976	0.389512195	0.41497561	0.409409214
Sanctuary Bridge	0.414247246	0.435152999	0.430991432	0.404455324
Riverfort	0.44843956	0.439252747	0.439868132	0.416583639
Highfort	0.426298343	0.41038674	0.406541436	0.380392879
The Shard	0.429903846	0.454086538	0.467740385	0.448656517

Figure .16: Playthrough Prediction Test Accuracies (Method 1).

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right)$	$(2,20,60,20,6)$	$(2,20,50,22,7)$	$(4,10,50,22,4)$	$(6,10,40,12,7)$	$(6,10,40,19,6)$
Metric 1					
Citadel Gate	0.356734694	0.311734694	0.344795918	0.264489796	0.293877551
Overwatch	0.316601307	0.305620915	0.379869281	0.264052288	0.272156863
Sanctuary Bridge	0.366923077	0.433333333	0.326666667	0.374358974	0.355384615
Riverfort	0.352380952	0.342857143	0.346031746	0.291428571	0.302857143
Highfort	0.361764706	0.354705882	0.371176471	0.342941176	0.292941176
The Shard	0.278014184	0.287092199	0.325106383	0.247659574	0.294184397
Metric 2					
Citadel Gate	0.370204082	0.318265306	0.341326531	0.268367347	0.295102041
Overwatch	0.338039216	0.30875817	0.387189542	0.275294118	0.282614379
Sanctuary Bridge	0.378717949	0.461794872	0.332564103	0.376410256	0.372051282
Riverfort	0.365079365	0.378412698	0.344761905	0.295873016	0.316825397
Highfort	0.374705882	0.380588235	0.384705882	0.361764706	0.33
The Shard	0.285673759	0.304397163	0.312056738	0.267234043	0.295602837
Metric 3					
Citadel Gate	0.356734694	0.311734694	0.344795918	0.264489796	0.293877551
Overwatch	0.316601307	0.305620915	0.379869281	0.264052288	0.272156863
Sanctuary Bridge	0.366923077	0.433333333	0.326666667	0.374358974	0.355384615
Riverfort	0.352380952	0.342857143	0.346031746	0.291428571	0.302857143
Highfort	0.361764706	0.354705882	0.371176471	0.342941176	0.292941176
The Shard	0.278014184	0.287092199	0.325106383	0.247659574	0.294184397
Metric 4					
Citadel Gate	0.413265306	0.366020408	0.350204082	0.291632653	0.319183673
Overwatch	0.431372549	0.407843137	0.41254902	0.312679739	0.320784314
Sanctuary Bridge	0.422307692	0.507692308	0.368974359	0.403333333	0.395384615
Riverfort	0.42984127	0.445714286	0.403174603	0.311746032	0.351111111
Highfort	0.43	0.452941176	0.415294118	0.394117647	0.353529412
The Shard	0.323971631	0.330496454	0.352907801	0.319148936	0.330780142

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{k}_{1}, \mathrm{~K}_{2}\right) \quad(6,16,50,12,3)(4,20,40,24,5)(6,10,60,20,10)(6,10,40,12,3)(2,20,50,16,7)$

Metric 1

Citadel Gate	0.411938776	0.441938776	0.340918367	0.367755102	0.317142857
Overwatch	0.361045752	0.380653595	0.292810458	0.315294118	0.339346405
Sanctuary Bridge	0.432307692	0.435897436	0.395897436	0.346410256	0.451282051
Riverfort	0.366349206	0.393015873	0.316825397	0.380952381	0.344126984
Highfort	0.368235294	0.382941176	0.384117647	0.269411765	0.332352941
The Shard	0.345248227	0.39035461	0.269787234	0.303829787	0.278865248

Metric 2

Citadel Gate	0.411938776	0.443571429	0.343367347	0.370510204	0.315408163
Overwatch	0.386666667	0.390588235	0.293071895	0.324705882	0.350588235
Sanctuary Bridge	0.441794872	0.46025641	0.402820513	0.354102564	0.454102564
Riverfort	0.371428571	0.45015873	0.322539683	0.38984127	0.367619048
Highfort	0.38	0.391764706	0.404705882	0.286470588	0.375882353
The Shard	0.345531915	0.400567376	0.262411348	0.307234043	0.298156028
Metric 3					
Citadel Gate	0.411938776	0.441938776	0.340918367	0.367755102	0.317142857
Overwatch	0.361045752	0.380653595	0.292810458	0.315294118	0.339346405
Sanctuary Bridge	0.432307692	0.435897436	0.395897436	0.346410256	0.451282051
Riverfort	0.366349206	0.393015873	0.316825397	0.380952381	0.344126984
Highfort	0.368235294	0.382941176	0.384117647	0.269411765	0.332352941
The Shard	0.345248227	0.39035461	0.269787234	0.303829787	0.278865248

Metric 4

Citadel Gate	0.416632653	0.457244898	0.378571429	0.382142857	0.355306122
Overwatch	0.437385621	0.438954248	0.34248366	0.352941176	0.418039216
Sanctuary Bridge	0.468974359	0.496666667	0.448461538	0.365128205	0.497179487
Riverfort	0.415873016	0.487619048	0.371428571	0.406349206	0.441269841
Highfort	0.401176471	0.457647059	0.437647059	0.302352941	0.419411765
The Shard	0.390070922	0.404822695	0.299007092	0.333333333	0.330496454

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,50,10,3)(2,20,50,16,6)(2,20,50,24,5)(2,20,50,22,5)(2,20,50,22,8)$

Metric 1					
Citadel Gate	0.444897959	0.304183673	0.320306122	0.316122449	0.240816327
Overwatch	0.396339869	0.271633987	0.303006536	0.288888889	0.304052288
Sanctuary Bridge	0.358974359	0.390512821	0.394871795	0.417179487	0.355897436
Riverfort	0.355555556	0.319365079	0.356825397	0.365079365	0.352380952
Highfort	0.397647059	0.414117647	0.44	0.405882353	0.363529412
The Shard	0.297021277	0.284539007	0.313475177	0.347801418	0.221560284
Metric 2					
Citadel Gate	0.449897959	0.315204082	0.329081633	0.324285714	0.256836735
Overwatch	0.396601307	0.279477124	0.328366013	0.31503268	0.334379085
Sanctuary Bridge	0.37025641	0.397179487	0.403589744	0.425128205	0.384871795
Riverfort	0.380952381	0.326984127	0.355555556	0.365714286	0.377777778
Highfort	0.376470588	0.452941176	0.470588235	0.464117647	0.387058824
The Shard	0.300992908	0.270638298	0.308652482	0.342695035	0.227234043
Metric 3					
Citadel Gate	0.444897959	0.304183673	0.320306122	0.316122449	0.240816327
Overwatch	0.396339869	0.271633987	0.303006536	0.288888889	0.304052288
Sanctuary Bridge	0.358974359	0.390512821	0.394871795	0.417179487	0.355897436
Riverfort	0.355555556	0.319365079	0.356825397	0.365079365	0.352380952
Highfort	0.397647059	0.414117647	0.44	0.405882353	0.363529412
The Shard	0.297021277	0.284539007	0.313475177	0.347801418	0.221560284
Metric 4					
Citadel Gate	0.467755102	0.356836735	0.367755102	0.356020408	0.306530612
Overwatch	0.432941176	0.331764706	0.392156863	0.362091503	0.403660131
Sanctuary Bridge	0.37025641	0.421538462	0.434615385	0.445897436	0.455128205
Riverfort	0.420952381	0.376507937	0.418412698	0.431746032	0.455873016
Highfort	0.396470588	0.469411765	0.532352941	0.486470588	0.443529412
The Shard	0.31858156	0.310921986	0.334184397	0.366524823	0.270921986

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime}, \mathrm{K}_{1}, \mathrm{k}_{2}\right) \quad(2,20,50,22,9)(2,20,50,23,7)(2,20,50,21,7) \quad$ Mean

Metric 1

Citadel Gate	0.308163265	0.335	0.316530612	0.335408163
Overwatch	0.303006536	0.322875817	0.275555556	0.316267248
Sanctuary Bridge	0.328205128	0.423076923	0.420512821	0.389316239
Riverfort	0.365714286	0.346031746	0.341587302	0.346631393
Highfort	0.371764706	0.398235294	0.369411765	0.367843137
The Shard	0.226950355	0.299574468	0.315460993	0.295918046
Metric 2				
Citadel Gate	0.329591837	0.346122449	0.329591837	0.342148526
Overwatch	0.317908497	0.329411765	0.317647059	0.330907771
Sanctuary Bridge	0.362820513	0.442307692	0.436410256	0.403176638
Riverfort	0.365079365	0.363809524	0.375238095	0.361869489
Highfort	0.403529412	0.408823529	0.405882353	0.391111111
The Shard	0.247375887	0.302695035	0.310921986	0.299448385

Metric 3

Citadel Gate	0.308163265	0.335	0.316530612	0.335408163
Overwatch	0.303006536	0.322875817	0.275555556	0.316267248
Sanctuary Bridge	0.328205128	0.423076923	0.420512821	0.389316239
Riverfort	0.365714286	0.346031746	0.341587302	0.346631393
Highfort	0.371764706	0.398235294	0.369411765	0.367843137
The Shard	0.226950355	0.299574468	0.315460993	0.295918046
Metric 4				
Citadel Gate	0.375408163	0.39244898	0.380612245	0.374087302
Overwatch	0.376470588	0.409150327	0.404444444	0.388206245
Sanctuary Bridge	0.412307692	0.480512821	0.483333333	0.437649573
Riverfort	0.42031746	0.464761905	0.476190476	0.418271605
Highfort	0.460588235	0.474705882	0.449411765	0.432058824
The Shard	0.283404255	0.335035461	0.342411348	0.332056738

Figure .17: Playthrough Prediction Training Accuracies (Method 2 - Multinomial).
$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,60,20,6)(2,20,50,22,7)(4,10,50,22,4)(6,10,40,12,7)(6,10,40,19,6)$

Baseline

Citadel Gate	0.581325301	0.581325301	0.581325301	0.581709145	0.581709145
Overwatch	0.54884742	0.549342105	0.549342105	0.549835706	0.549835706
Sanctuary Bridge	0.531701891	0.53222222	0.532222222	0.532150776	0.532150776
Riverfort	0.55	0.550440744	0.550440744	0.55078125	0.55078125
Highfort	0.542120912	0.542574257	0.542574257	0.542574257	0.542574257
The Shard	0.571888412	0.572347267	0.572347267	0.572649573	0.572649573

Metric 1

Citadel Gate	0.59939759	0.582831325	0.611445783	0.625187406	0.620689655
Overwatch	0.568605928	0.559210526	0.57127193	0.579408543	0.583789704
Sanctuary Bridge	0.540600667	0.537777778	0.563333333	0.575388027	0.586474501
Riverfort	0.55	0.55337904	0.576885406	0.583984375	0.580078125
Highfort	0.545094153	0.545544554	0.57029703	0.593287266	0.57946693
The Shard	0.575107296	0.578778135	0.589496249	0.608974359	0.590811966

Metric 2

| Citadel Gate | 0.596385542 | 0.582831325 | 0.605421687 | 0.614692654 | 0.620689655 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Overwatch | 0.565312843 | 0.550438596 | 0.567982456 | 0.576122673 | 0.575027382 |
| Sanctuary Bridge | 0.536151279 | 0.53777778 | 0.558888889 | 0.563192905 | 0.569844789 |
| Riverfort | 0.55 | 0.55337904 | 0.569049951 | 0.579101563 | 0.576171875 |
| Highfort | 0.542120912 | 0.542574257 | 0.562376238 | 0.586377098 | 0.567620928 |
| The Shard | 0.576180258 | 0.57449089 | 0.592711683 | 0.603632479 | 0.586538462 |

Metric 3

Citadel Gate	0.59939759	0.582831325	0.611445783	0.623688156	0.620689655
Overwatch	0.568605928	0.559210526	0.57127193	0.578313253	0.583789704
Sanctuary Bridge	0.540600667	0.537777778	0.563333333	0.575388027	0.586474501
Riverfort	0.55	0.55337904	0.576885406	0.583984375	0.580078125
Highfort	0.545094153	0.545544554	0.569306931	0.593287266	0.578479763
The Shard	0.575107296	0.578778135	0.589496249	0.608974359	0.590811966
Metric 4					
Citadel Gate	0.551204819	0.56626506	0.561746988	0.505247376	0.538230885
Overwatch	0.563117453	0.543859649	0.54495614	0.519167579	0.514786418
Sanctuary Bridge	0.536151279	0.52888889	0.537777778	0.506651885	0.521064302
Riverfort	0.55	0.539666993	0.536728697	0.51953125	0.526367188
Highfort	0.545094153	0.535643564	0.534653465	0.502467917	0.514313919
The Shard	0.572961373	0.56698821	0.573419078	0.518162393	0.536324786

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{k}_{1}, \mathrm{~K}_{2}\right) \quad(6,16,50,12,3)(4,20,40,24,5)(6,10,60,20,10)(6,10,40,12,3)(2,20,50,16,7)$

Baseline					
Citadel Gate	0.581325301	0.581709145	0.581325301	0.581709145	0.581325301
Overwatch	0.549342105	0.549835706	0.54884742	0.549835706	0.549342105
Sanctuary Bridge	0.532222222	0.532150776	0.531701891	0.532150776	0.532222222
Riverfort	0.550440744	0.55078125	0.55	0.55078125	0.550440744
Highfort	0.542574257	0.542574257	0.542120912	0.542941757	0.542574257
The Shard	0.572347267	0.572649573	0.571888412	0.572649573	0.572347267
Metric 1					
Citadel Gate	0.581325301	0.581709145	0.615963855	0.581709145	0.581325301
Overwatch	0.549342105	0.549835706	0.571899012	0.553121577	0.558114035
Sanctuary Bridge	0.532222222	0.532150776	0.546162403	0.534368071	0.538888889
Riverfort	0.550440744	0.55078125	0.573529412	0.551757813	0.556317336
Highfort	0.542574257	0.542941757	0.567888999	0.544916091	0.548514851
The Shard	0.572347267	0.572649573	0.571888412	0.575854701	0.57449089
Metric 2					
Citadel Gate	0.581325301	0.581709145	0.620481928	0.586206897	0.581325301
Overwatch	0.549342105	0.549835706	0.572996707	0.553121577	0.558114035
Sanctuary Bridge	0.532222222	0.532150776	0.548387097	0.534368071	0.534444444
Riverfort	0.550440744	0.55078125	0.570588235	0.553710938	0.555337904
Highfort	0.542574257	0.542941757	0.57086224	0.544916091	0.545544554
The Shard	0.572347267	0.572649573	0.589055794	0.576923077	0.57449089
Metric 3					
Citadel Gate	0.581325301	0.581709145	0.615963855	0.581709145	0.581325301
Overwatch	0.549342105	0.549835706	0.571899012	0.553121577	0.558114035
Sanctuary Bridge	0.532222222	0.532150776	0.546162403	0.534368071	0.538888889
Riverfort	0.550440744	0.55078125	0.573529412	0.551757813	0.555337904
Highfort	0.542574257	0.542941757	0.566897919	0.544916091	0.548514851
The Shard	0.572347267	0.572649573	0.589055794	0.575854701	0.57449089
Metric 4					
Citadel Gate	0.581325301	0.572713643	0.516566265	0.563718141	0.55873494
Overwatch	0.549342105	0.547645126	0.515916575	0.538882804	0.54495614
Sanctuary Bridge	0.532222222	0.532150776	0.515016685	0.521064302	0.523333333
Riverfort	0.550440744	0.547851563	0.512745098	0.541015625	0.540646425
Highfort	0.542574257	0.542941757	0.508424182	0.529121422	0.533663366
The Shard	0.572347267	0.572649573	0.539699571	0.561965812	0.56698821

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,50,10,3)(2,20,50,16,6)(2,20,50,24,5)(2,20,50,22,5)(2,20,50,22,8)$

Baseline					
Citadel Gate	0.581325301	0.581325301	0.581325301	0.581325301	0.581325301
Overwatch	0.549342105	0.549342105	0.549342105	0.549342105	0.549342105
Sanctuary Bridge	0.532222222	0.532222222	0.532222222	0.532222222	0.532222222
Riverfort	0.550440744	0.550440744	0.550440744	0.550440744	0.550440744
Highfort	0.542574257	0.542574257	0.542574257	0.542574257	0.542574257
The Shard	0.572347267	0.572347267	0.572347267	0.572347267	0.572347267
Metric 1					
Citadel Gate	0.581325301	0.582831325	0.584337349	0.584337349	0.588855422
Overwatch	0.549342105	0.552631579	0.551535088	0.554824561	0.558114035
Sanctuary Bridge	0.532222222	0.535555556	0.536666667	0.536666667	0.534444444
Riverfort	0.550440744	0.55337904	0.554358472	0.554358472	0.560235064
Highfort	0.542574257	0.543564356	0.545544554	0.545544554	0.551485149
The Shard	0.572347267	0.573419078	0.572347267	0.573419078	0.580921758
Metric 2					
Citadel Gate	0.581325301	0.582831325	0.584337349	0.584337349	0.588855422
Overwatch	0.549342105	0.552631579	0.552631579	0.554824561	0.557017544
Sanctuary Bridge	0.532222222	0.527777778	0.533333333	0.535555556	0.53
Riverfort	0.550440744	0.550440744	0.555337904	0.554358472	0.547502449
Highfort	0.542574257	0.543564356	0.541584158	0.545544554	0.544554455
The Shard	0.572347267	0.573419078	0.572347267	0.573419078	0.577706324
Metric 3					
Citadel Gate	0.581325301	0.582831325	0.584337349	0.584337349	0.588855422
Overwatch	0.549342105	0.552631579	0.551535088	0.554824561	0.558114035
Sanctuary Bridge	0.532222222	0.535555556	0.536666667	0.536666667	0.534444444
Riverfort	0.550440744	0.55337904	0.554358472	0.554358472	0.560235064
Highfort	0.542574257	0.543564356	0.545544554	0.545544554	0.551485149
The Shard	0.572347267	0.573419078	0.572347267	0.573419078	0.580921758
Metric 4					
Citadel Gate	0.581325301	0.564759036	0.557228916	0.555722892	0.557228916
Overwatch	0.549342105	0.55372807	0.551535088	0.557017544	0.550438596
Sanctuary Bridge	0.532222222	0.536666667	0.536666667	0.535555556	0.528888889
Riverfort	0.550440744	0.551420176	0.556317336	0.555337904	0.545543585
Highfort	0.542574257	0.543564356	0.545544554	0.547524752	0.538613861
The Shard	0.572347267	0.56698821	0.570203644	0.571275456	0.569131833

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right)$	$(2,20,50,22,9)$	$(2,20,50,23,7)$	$(2,20,50,21,7)$	Mean
Baseline				
Citadel Gate	0.581325301	0.581325301	0.581325301	0.5814106
Overwatch	0.549342105	0.549342105	0.549342105	0.549396829
Sanctuary Bridge	0.532222222	0.53222222	0.532222222	0.532148531
Riverfort	0.550440744	0.550440744	0.550440744	0.550467441
Highfort	0.542574257	0.542574257	0.542574257	0.542544302
The Shard	0.572347267	0.572347267	0.572347267	0.572363462
Metric 1				
Citadel Gate	0.593373494	0.596385542	0.585843373	0.593270759
Overwatch	0.567982456	0.559210526	0.551535088	0.560543028
Sanctuary Bridge	0.542222222	0.538888889	0.54	0.543557407
Riverfort	0.568070519	0.556317336	0.556317336	0.560035027
Highfort	0.556435644	0.552475248	0.547524752	0.553648578
The Shard	0.59056806	0.577706324	0.57449089	0.579201032
Metric 2				
Citadel Gate	0.588855422	0.590361446	0.587349398	0.59218458
Overwatch	0.564692982	0.555921053	0.551535088	0.558716143
Sanctuary Bridge	0.543333333	0.536666667	0.538888889	0.540289224
Riverfort	0.563173359	0.554358472	0.554358472	0.557696229
Highfort	0.556435644	0.545544554	0.543564356	0.55062637
The Shard	0.586280815	0.575562701	0.571275456	0.578965464
Metric 3				
Citadel Gate	0.593373494	0.596385542	0.585843373	0.593187468
Overwatch	0.567982456	0.559210526	0.551535088	0.560482179
Sanctuary Bridge	0.542222222	0.538888889	0.54	0.543557407
Riverfort	0.567091087	0.557296768	0.556317336	0.559980614
Highfort	0.556435644	0.552475248	0.547524752	0.55348367
The Shard	0.591639871	0.577706324	0.57449089	0.58021432
Metric 4				
Citadel Gate	0.567771084	0.549698795	0.546686747	0.555343061
Overwatch	0.535087719	0.539473684	0.548245614	0.542638801
Sanctuary Bridge	0.537777778	0.524444444	0.527777778	0.528573414
Riverfort	0.538687561	0.541625857	0.542605289	0.541498446
Highfort	0.534653465	0.536633663	0.535643564	0.534091693
The Shard	0.560557342	0.564844587	0.559485531	0.562018897

Figure .18: Playthrough Prediction Test Accuracies (Method 2 - Multinomial).

(t, $\mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}$)	$(2,20,60,20,6)$	$(2,20,50,22,7)$	$(4,10,50,22,4)$	$(6,10,40,12,7)$	$(6,10,40,19,6)$
Baseline					
Citadel Gate	0.528061224	0.528061224	0.528061224	0.528061224	0.528061224
Overwatch	0.594771242	0.594771242	0.594771242	0.594771242	0.594771242
Sanctuary Bridge	0.666666667	0.666666667	0.666666667	0.666666667	0.666666667
Riverfort	0.603174603	0.603174603	0.603174603	0.603174603	0.603174603
Highfort	0.720588235	0.720588235	0.720588235	0.720588235	0.720588235
The Shard	0.460992908	0.460992908	0.460992908	0.460992908	0.460992908
Metric 1					
Citadel Gate	0.242346939	0.232142857	0.227040816	0.232142857	0.221938776
Overwatch	0.254901961	0.241830065	0.222222222	0.22222222	0.215686275
Sanctuary Bridge	0.307692308	0.301282051	0.288461538	0.301282051	0.294871795
Riverfort	0.603174603	0.555555556	0.523809524	0.53968254	0.476190476
Highfort	0.485294118	0.5	0.441176471	0.455882353	0.426470588
The Shard	0.29787234	0.304964539	0.283687943	0.319148936	0.290780142
Metric 2					
Citadel Gate	0.237244898	0.234693878	0.232142857	0.232142857	0.224489796
Overwatch	0.254901961	0.248366013	0.22875817	0.215686275	0.215686275
Sanctuary Bridge	0.307692308	0.301282051	0.294871795	0.288461538	0.275641026
Riverfort	0.603174603	0.587301587	0.555555556	0.53968254	0.492063492
Highfort	0.5	0.485294118	0.441176471	0.470588235	0.441176471
The Shard	0.290780142	0.304964539	0.283687943	0.312056738	0.283687943
Metric 3					
Citadel Gate	0.242346939	0.232142857	0.227040816	0.232142857	0.221938776
Overwatch	0.254901961	0.241830065	0.222222222	0.22222222	0.215686275
Sanctuary Bridge	0.307692308	0.301282051	0.288461538	0.301282051	0.294871795
Riverfort	0.603174603	0.555555556	0.523809524	0.53968254	0.476190476
Highfort	0.485294118	0.5	0.441176471	0.455882353	0.426470588
The Shard	0.29787234	0.304964539	0.283687943	0.319148936	0.290780142
Metric 4					
Citadel Gate	0.216836735	0.214285714	0.211734694	0.211734694	0.198979592
Overwatch	0.189542484	0.169934641	0.176470588	0.183006536	0.169934641
Sanctuary Bridge	0.269230769	0.243589744	0.230769231	0.230769231	0.25
Riverfort	0.444444444	0.428571429	0.349206349	0.412698413	0.333333333
Highfort	0.382352941	0.367647059	0.279411765	0.367647059	0.279411765
The Shard	0.262411348	0.24822695	0.219858156	0.255319149	0.234042553

$\left(t, t^{\prime}, t^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(6,16,50,12,3)(4,20,40,24,5)(6,10,60,20,10)(6,10,40,12,3)(2,20,50,16,7)$

Baseline					
Citadel Gate	0.528061224	0.528061224	0.528061224	0.528061224	0.528061224
Overwatch	0.594771242	0.594771242	0.594771242	0.594771242	0.594771242
Sanctuary Bridge	0.666666667	0.666666667	0.666666667	0.666666667	0.666666667
Riverfort	0.603174603	0.603174603	0.603174603	0.603174603	0.603174603
Highfort	0.720588235	0.720588235	0.720588235	0.720588235	0.720588235
The Shard	0.460992908	0.460992908	0.460992908	0.460992908	0.460992908
Metric 1					
Citadel Gate	0.232142857	0.232142857	0.214285714	0.234693878	0.232142857
Overwatch	0.248366013	0.248366013	0.235294118	0.241830065	0.241830065
Sanctuary Bridge	0.307692308	0.307692308	0.230769231	0.314102564	0.307692308
Riverfort	0.587301587	0.587301587	0.476190476	0.603174603	0.571428571
Highfort	0.485294118	0.485294118	0.25	0.485294118	0.5
The Shard	0.304964539	0.304964539	0.276595745	0.29787234	0.304964539
Metric 2					
Citadel Gate	0.234693878	0.234693878	0.219387755	0.234693878	0.234693878
Overwatch	0.248366013	0.248366013	0.241830065	0.241830065	0.248366013
Sanctuary Bridge	0.307692308	0.307692308	0.230769231	0.307692308	0.301282051
Riverfort	0.603174603	0.603174603	0.476190476	0.603174603	0.603174603
Highfort	0.485294118	0.485294118	0.264705882	0.485294118	0.5
The Shard	0.304964539	0.304964539	0.269503546	0.29787234	0.304964539
Metric 3					
Citadel Gate	0.232142857	0.232142857	0.214285714	0.234693878	0.232142857
Overwatch	0.248366013	0.248366013	0.235294118	0.241830065	0.241830065
Sanctuary Bridge	0.307692308	0.307692308	0.230769231	0.314102564	0.307692308
Riverfort	0.587301587	0.587301587	0.476190476	0.603174603	0.571428571
Highfort	0.485294118	0.485294118	0.25	0.485294118	0.5
The Shard	0.304964539	0.304964539	0.276595745	0.29787234	0.304964539
Metric 4					
Citadel Gate	0.206632653	0.219387755	0.198979592	0.209183673	0.204081633
Overwatch	0.176470588	0.248366013	0.169934641	0.169934641	0.169934641
Sanctuary Bridge	0.256410256	0.211538462	0.192307692	0.243589744	0.25
Riverfort	0.396825397	0.46031746	0.333333333	0.476190476	0.492063492
Highfort	0.338235294	0.382352941	0.205882353	0.338235294	0.308823529
The Shard	0.262411348	0.255319149	0.19858156	0.24822695	0.241134752

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,50,10,3)(2,20,50,16,6)(2,20,50,24,5)(2,20,50,22,5)(2,20,50,22,8)$

Baseline					
Citadel Gate	0.528061224	0.528061224	0.528061224	0.528061224	0.528061224
Overwatch	0.594771242	0.594771242	0.594771242	0.594771242	0.594771242
Sanctuary Bridge	0.666666667	0.666666667	0.666666667	0.666666667	0.666666667
Riverfort	0.603174603	0.603174603	0.603174603	0.603174603	0.603174603
Highfort	0.720588235	0.720588235	0.720588235	0.720588235	0.720588235
The Shard	0.460992908	0.460992908	0.460992908	0.460992908	0.460992908
Metric 1					
Citadel Gate	0.232142857	0.232142857	0.232142857	0.232142857	0.227040816
Overwatch	0.248366013	0.248366013	0.248366013	0.248366013	0.235294118
Sanctuary Bridge	0.307692308	0.307692308	0.294871795	0.294871795	0.301282051
Riverfort	0.587301587	0.571428571	0.571428571	0.571428571	0.53968254
Highfort	0.485294118	0.485294118	0.5	0.5	0.470588235
The Shard	0.304964539	0.304964539	0.304964539	0.304964539	0.262411348
Metric 2					
Citadel Gate	0.234693878	0.234693878	0.234693878	0.234693878	0.227040816
Overwatch	0.254901961	0.248366013	0.248366013	0.248366013	0.235294118
Sanctuary Bridge	0.314102564	0.307692308	0.294871795	0.294871795	0.294871795
Riverfort	0.603174603	0.603174603	0.587301587	0.587301587	0.53968254
Highfort	0.485294118	0.485294118	0.485294118	0.470588235	0.470588235
The Shard	0.304964539	0.304964539	0.304964539	0.304964539	0.262411348
Metric 3					
Citadel Gate	0.232142857	0.232142857	0.232142857	0.232142857	0.227040816
Overwatch	0.248366013	0.248366013	0.248366013	0.248366013	0.235294118
Sanctuary Bridge	0.307692308	0.307692308	0.294871795	0.294871795	0.301282051
Riverfort	0.587301587	0.571428571	0.571428571	0.571428571	0.53968254
Highfort	0.485294118	0.485294118	0.5	0.5	0.470588235
The Shard	0.304964539	0.304964539	0.304964539	0.304964539	0.262411348
Metric 4					
Citadel Gate	0.204081633	0.209183673	0.209183673	0.209183673	0.219387755
Overwatch	0.189542484	0.189542484	0.196078431	0.183006536	0.176470588
Sanctuary Bridge	0.237179487	0.25	0.217948718	0.243589744	0.243589744
Riverfort	0.412698413	0.444444444	0.444444444	0.444444444	0.380952381
Highfort	0.411764706	0.367647059	0.323529412	0.382352941	0.352941176
The Shard	0.262411348	0.234042553	0.255319149	0.24822695	0.226950355

$\left(t, t^{\prime}, t^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right)$	$(2,20,50,22,9)$	$(2,20,50,23,7)$	$(2,20,50,21,7)$	Mean
Baseline				
Citadel Gate	0.528061224	0.528061224	0.528061224	0.528061224
Overwatch	0.594771242	0.594771242	0.594771242	0.594771242
Sanctuary Bridge	0.666666667	0.666666667	0.666666667	0.666666667
Riverfort	0.603174603	0.603174603	0.603174603	0.603174603
Highfort	0.720588235	0.720588235	0.720588235	0.720588235
The Shard	0.460992908	0.460992908	0.460992908	0.460992908
Metric 1				
Citadel Gate	0.224489796	0.232142857	0.232142857	0.230300454
Overwatch	0.235294118	0.241830065	0.235294118	0.239651416
Sanctuary Bridge	0.307692308	0.301282051	0.301282051	0.298789174
Riverfort	0.53968254	0.555555556	0.53968254	0.555555556
Highfort	0.485294118	0.470588235	0.485294118	0.466503268
The Shard	0.290780142	0.312056738	0.29787234	0.298266351
Metric 2				
Citadel Gate	0.227040816	0.237244898	0.234693878	0.232426304
Overwatch	0.235294118	0.248366013	0.235294118	0.241466957
Sanctuary Bridge	0.307692308	0.294871795	0.301282051	0.296296296
Riverfort	0.587301587	0.587301587	0.571428571	0.574074074
Highfort	0.485294118	0.455882353	0.485294118	0.465686275
The Shard	0.276595745	0.312056738	0.29787234	0.295902285
Metric 3				
Citadel Gate	0.224489796	0.232142857	0.232142857	0.230300454
Overwatch	0.235294118	0.241830065	0.235294118	0.239651416
Sanctuary Bridge	0.307692308	0.301282051	0.301282051	0.298789174
Riverfort	0.53968254	0.555555556	0.53968254	0.555555556
Highfort	0.485294118	0.470588235	0.485294118	0.466503268
The Shard	0.290780142	0.312056738	0.29787234	0.298266351
Metric 4				
Citadel Gate	0.204081633	0.221938776	0.204081633	0.209608844
Overwatch	0.196078431	0.176470588	0.196078431	0.184822077
Sanctuary Bridge	0.262820513	0.25	0.217948718	0.238960114
Riverfort	0.412698413	0.46031746	0.571428571	0.427689594
Highfort	0.323529412	0.367647059	0.323529412	0.339052288
The Shard	0.290780142	0.269503546	0.24822695	0.247832939

Figure .19: Playthrough Prediction Training Accuracies (Method 2 - Binary).

(t, $\mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}$)	$(2,20,60,20,6)$	$(2,20,50,22,7)$	$(4,10,50,22,4)$	$(6,10,40,12,7)$	$(6,10,40,19,6)$
Baseline					
Citadel Gate	0.581325301	0.581325301	0.581325301	0.581709145	0.581709145
Overwatch	0.54884742	0.549342105	0.549342105	0.549835706	0.549835706
Sanctuary Bridge	0.531701891	0.53222222	0.532222222	0.532150776	0.532150776
Riverfort	0.55	0.550440744	0.550440744	0.55078125	0.55078125
Highfort	0.542120912	0.542574257	0.542574257	0.542941757	0.542941757
The Shard	0.571888412	0.572347267	0.572347267	0.572649573	0.572649573
Metric 1					
Citadel Gate	0.628012048	0.625	0.65060241	0.673163418	0.665667166
Overwatch	0.610318332	0.594298246	0.625	0.621029573	0.635268346
Sanctuary Bridge	0.604004449	0.587777778	0.637777778	0.630820399	0.657427938
Riverfort	0.591176471	0.590597453	0.630754163	0.619140625	0.634765625
Highfort	0.575817641	0.608910891	0.627722772	0.650542942	0.639684107
The Shard	0.607296137	0.601286174	0.627009646	0.662393162	0.616452991
Metric 2					
Citadel Gate	0.629518072	0.628012048	0.649096386	0.673163418	0.650674663
Overwatch	0.605927552	0.606359649	0.621710526	0.61007667	0.628696605
Sanctuary Bridge	0.588431591	0.58	0.64	0.628603104	0.650776053
Riverfort	0.580392157	0.593535749	0.621939275	0.620117188	0.629882813
Highfort	0.581764123	0.597029703	0.627722772	0.656465943	0.633761106
The Shard	0.608369099	0.59807074	0.628081458	0.663461538	0.612179487
Metric 3					
Citadel Gate	0.628012048	0.623493976	0.649096386	0.671664168	0.665667166
Overwatch	0.610318332	0.594298246	0.625	0.621029573	0.635268346
Sanctuary Bridge	0.605116796	0.587777778	0.638888889	0.630820399	0.65631929
Riverfort	0.591176471	0.590597453	0.630754163	0.619140625	0.634765625
Highfort	0.575817641	0.608910891	0.627722772	0.649555775	0.639684107
The Shard	0.607296137	0.602357985	0.627009646	0.663461538	0.616452991
Metric 4					
Citadel Gate	0.579819277	0.606927711	0.603915663	0.580209895	0.580209895
Overwatch	0.602634468	0.584429825	0.605263158	0.56407448	0.577217963
Sanctuary Bridge	0.590656285	0.577777778	0.62	0.576496674	0.611973392
Riverfort	0.585294118	0.576885406	0.597453477	0.568359375	0.583984375
Highfort	0.575817641	0.59009901	0.599009901	0.589338598	0.583415597
The Shard	0.604077253	0.588424437	0.617363344	0.592948718	0.567307692

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{k}_{1}, \mathrm{~K}_{2}\right) \quad(6,16,50,12,3)(4,20,40,24,5)(6,10,60,20,10)(6,10,40,12,3)(2,20,50,16,7)$

Baseline					
Citadel Gate	0.581325301	0.581709145	0.581325301	0.581709145	0.581325301
Overwatch	0.549342105	0.549835706	0.54884742	0.549835706	0.549342105
Sanctuary Bridge	0.532222222	0.532150776	0.531701891	0.532150776	0.532222222
Riverfort	0.550440744	0.55078125	0.55	0.55078125	0.550440744
Highfort	0.542574257	0.542941757	0.542120912	0.542941757	0.542574257
The Shard	0.572347267	0.572649573	0.571888412	0.572649573	0.572347267
Metric 1					
Citadel Gate	0.593373494	0.584707646	0.628012048	0.604197901	0.614457831
Overwatch	0.563596491	0.56736035	0.575192097	0.56626506	0.592105263
Sanctuary Bridge	0.56	0.535476718	0.556173526	0.557649667	0.598888889
Riverfort	0.564152791	0.557617188	0.579411765	0.571289063	0.598432909
Highfort	0.547524752	0.559723593	0.580773043	0.562685094	0.60990099
The Shard	0.573419078	0.572649573	0.592274678	0.588675214	0.59807074
Metric 2					
Citadel Gate	0.590361446	0.583208396	0.626506024	0.607196402	0.615963855
Overwatch	0.557017544	0.557502738	0.576289791	0.556407448	0.604166667
Sanctuary Bridge	0.546666667	0.525498891	0.557285873	0.557649667	0.586666667
Riverfort	0.554358472	0.55859375	0.579411765	0.564453125	0.605288932
Highfort	0.557425743	0.544916091	0.581764123	0.554787759	0.592079208
The Shard	0.576634512	0.572649573	0.597639485	0.588675214	0.592711683
Metric 3					
Citadel Gate	0.593373494	0.584707646	0.628012048	0.604197901	0.614457831
Overwatch	0.563596491	0.56736035	0.575192097	0.56626506	0.592105263
Sanctuary Bridge	0.56	0.535476718	0.556173526	0.557649667	0.597777778
Riverfort	0.564152791	0.557617188	0.579411765	0.571289063	0.598432909
Highfort	0.547524752	0.559723593	0.579781962	0.562685094	0.608910891
The Shard	0.573419078	0.572649573	0.592274678	0.588675214	0.59807074
Metric 4					
Citadel Gate	0.59186747	0.574212894	0.542168675	0.586206897	0.59186747
Overwatch	0.557017544	0.559693319	0.531284303	0.552026287	0.588815789
Sanctuary Bridge	0.552222222	0.533259424	0.536151279	0.544345898	0.577777778
Riverfort	0.554358472	0.556640625	0.530392157	0.55859375	0.591576885
Highfort	0.556435644	0.553800592	0.533201189	0.544916091	0.584158416
The Shard	0.575562701	0.572649573	0.557939914	0.573717949	0.593783494

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,50,10,3)(2,20,50,16,6)(2,20,50,24,5)(2,20,50,22,5)(2,20,50,22,8)$

Baseline					
Citadel Gate	0.581325301	0.581325301	0.581325301	0.581325301	0.581325301
Overwatch	0.549342105	0.549342105	0.549342105	0.549342105	0.549342105
Sanctuary Bridge	0.532222222	0.532222222	0.532222222	0.53222222	0.532222222
Riverfort	0.550440744	0.550440744	0.550440744	0.550440744	0.550440744
Highfort	0.542574257	0.542574257	0.542574257	0.542574257	0.542574257
The Shard	0.572347267	0.572347267	0.572347267	0.572347267	0.572347267
Metric 1					
Citadel Gate	0.581325301	0.596385542	0.59939759	0.602409639	0.614457831
Overwatch	0.567982456	0.582236842	0.578947368	0.577850877	0.596491228
Sanctuary Bridge	0.55	0.566666667	0.55	0.548888889	0.582222222
Riverfort	0.565132223	0.571988247	0.571988247	0.565132223	0.589618022
Highfort	0.555445545	0.579207921	0.575247525	0.573267327	0.589108911
The Shard	0.59056806	0.586280815	0.585209003	0.587352626	0.617363344
Metric 2					
Citadel Gate	0.581325301	0.594879518	0.593373494	0.602409639	0.620481928
Overwatch	0.564692982	0.575657895	0.57127193	0.565789474	0.591008772
Sanctuary Bridge	0.532222222	0.566666667	0.537777778	0.55	0.584444444
Riverfort	0.568070519	0.565132223	0.567091087	0.565132223	0.581782566
Highfort	0.558415842	0.581188119	0.571287129	0.57029703	0.589108911
The Shard	0.59056806	0.588424437	0.588424437	0.591639871	0.59807074
Metric 3					
Citadel Gate	0.581325301	0.596385542	0.59939759	0.602409639	0.614457831
Overwatch	0.567982456	0.581140351	0.578947368	0.577850877	0.596491228
Sanctuary Bridge	0.55	0.566666667	0.548888889	0.548888889	0.582222222
Riverfort	0.565132223	0.571988247	0.571988247	0.565132223	0.589618022
Highfort	0.555445545	0.578217822	0.575247525	0.574257426	0.589108911
The Shard	0.59056806	0.584137192	0.585209003	0.587352626	0.617363344
Metric 4					
Citadel Gate	0.581325301	0.578313253	0.570783133	0.576807229	0.582831325
Overwatch	0.563596491	0.575657895	0.574561404	0.567982456	0.58004386
Sanctuary Bridge	0.546666667	0.565555556	0.54	0.553333333	0.581111111
Riverfort	0.567091087	0.571008815	0.567091087	0.562193928	0.569049951
Highfort	0.557425743	0.576237624	0.571287129	0.574257426	0.576237624
The Shard	0.59056806	0.578778135	0.588424437	0.588424437	0.594855305

$\left(t, t^{\prime}, t^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right)$	$(2,20,50,22,9)$	$(2,20,50,23,7)$	$(2,20,50,21,7)$	Mean
Baseline				
Citadel Gate	0.581325301	0.581325301	0.581325301	0.5814106
Overwatch	0.549342105	0.549342105	0.549342105	0.549396829
Sanctuary Bridge	0.53222222	0.53222222	0.532222222	0.532148531
Riverfort	0.550440744	0.550440744	0.550440744	0.550467441
Highfort	0.542574257	0.542574257	0.542574257	0.542605552
The Shard	0.572347267	0.572347267	0.572347267	0.572363462
Metric 1				
Citadel Gate	0.640060241	0.644578313	0.629518072	0.620851472
Overwatch	0.628289474	0.605263158	0.609649123	0.594285794
Sanctuary Bridge	0.593333333	0.578888889	0.588888889	0.582493668
Riverfort	0.6043095	0.58863859	0.589618022	0.58798684
Highfort	0.614851485	0.599009901	0.594059406	0.591304658
The Shard	0.620578778	0.59807074	0.59807074	0.601278972
Metric 2				
Citadel Gate	0.635542169	0.631024096	0.629518072	0.619014163
Overwatch	0.626096491	0.606359649	0.594298246	0.589962813
Sanctuary Bridge	0.575555556	0.573333333	0.582222222	0.575766708
Riverfort	0.607247796	0.599412341	0.579823702	0.585648094
Highfort	0.623762376	0.597029703	0.59009901	0.589383594
The Shard	0.603429796	0.602357985	0.602357985	0.600208117
Metric 3				
Citadel Gate	0.638554217	0.644578313	0.628012048	0.620433508
Overwatch	0.628289474	0.605263158	0.609649123	0.594224877
Sanctuary Bridge	0.593333333	0.577777778	0.588888889	0.582370417
Riverfort	0.6043095	0.58863859	0.589618022	0.58798684
Highfort	0.614851485	0.600990099	0.594059406	0.591249761
The Shard	0.620578778	0.59807074	0.59807074	0.601278781
Metric 4				
Citadel Gate	0.61746988	0.593373494	0.587349398	0.584758825
Overwatch	0.597587719	0.587719298	0.589912281	0.575528808
Sanctuary Bridge	0.568888889	0.564444444	0.582222222	0.567937942
Riverfort	0.584720862	0.57884427	0.569049951	0.570699366
Highfort	0.600990099	0.579207921	0.582178218	0.573778581
The Shard	0.581993569	0.59056806	0.589496249	0.585937963

Figure .20: Playthrough Prediction Test Accuracies (Method 2 - Binary).

(t, $\mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}$)	$(2,20,60,20,6)$	$(2,20,50,22,7)$	$(4,10,50,22,4)$	$(6,10,40,12,7)$	$(6,10,40,19,6)$
Baseline					
Citadel Gate	0.528061224	0.528061224	0.528061224	0.528061224	0.528061224
Overwatch	0.594771242	0.594771242	0.594771242	0.594771242	0.594771242
Sanctuary Bridge	0.666666667	0.666666667	0.666666667	0.666666667	0.666666667
Riverfort	0.603174603	0.603174603	0.603174603	0.603174603	0.603174603
Highfort	0.720588235	0.720588235	0.720588235	0.720588235	0.720588235
The Shard	0.460992908	0.460992908	0.460992908	0.460992908	0.460992908
Metric 1					
Citadel Gate	0.489795918	0.477040816	0.474489796	0.50255102	0.494897959
Overwatch	0.424836601	0.437908497	0.418300654	0.418300654	0.45751634
Sanctuary Bridge	0.435897436	0.423076923	0.429487179	0.416666667	0.397435897
Riverfort	0.523809524	0.53968254	0.492063492	0.476190476	0.444444444
Highfort	0.455882353	0.397058824	0.382352941	0.441176471	0.397058824
The Shard	0.539007092	0.588652482	0.553191489	0.567375887	0.588652482
Metric 2					
Citadel Gate	0.489795918	0.482142857	0.474489796	0.50255102	0.49744898
Overwatch	0.424836601	0.418300654	0.424836601	0.424836601	0.450980392
Sanctuary Bridge	0.442307692	0.416666667	0.435897436	0.403846154	0.378205128
Riverfort	0.53968254	0.53968254	0.53968254	0.492063492	0.476190476
Highfort	0.441176471	0.411764706	0.367647059	0.455882353	0.382352941
The Shard	0.553191489	0.574468085	0.546099291	0.567375887	0.581560284
Metric 3					
Citadel Gate	0.489795918	0.477040816	0.474489796	0.50255102	0.494897959
Overwatch	0.424836601	0.437908497	0.418300654	0.418300654	0.45751634
Sanctuary Bridge	0.435897436	0.423076923	0.429487179	0.416666667	0.397435897
Riverfort	0.523809524	0.53968254	0.492063492	0.476190476	0.444444444
Highfort	0.455882353	0.397058824	0.382352941	0.441176471	0.397058824
The Shard	0.539007092	0.588652482	0.553191489	0.567375887	0.588652482
Metric 4					
Citadel Gate	0.479591837	0.464285714	0.464285714	0.482142857	0.477040816
Overwatch	0.392156863	0.392156863	0.392156863	0.39869281	0.411764706
Sanctuary Bridge	0.384615385	0.391025641	0.371794872	0.371794872	0.326923077
Riverfort	0.46031746	0.46031746	0.46031746	0.396825397	0.444444444
Highfort	0.382352941	0.397058824	0.352941176	0.426470588	0.323529412
The Shard	0.524822695	0.510638298	0.517730496	0.553191489	0.517730496

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{k}_{1}, \mathrm{~K}_{2}\right) \quad(6,16,50,12,3)(4,20,40,24,5)(6,10,60,20,10)(6,10,40,12,3)(2,20,50,16,7)$

Baseline					
Citadel Gate	0.528061224	0.528061224	0.528061224	0.528061224	0.528061224
Overwatch	0.594771242	0.594771242	0.594771242	0.594771242	0.594771242
Sanctuary Bridge	0.666666667	0.666666667	0.666666667	0.666666667	0.666666667
Riverfort	0.603174603	0.603174603	0.603174603	0.603174603	0.603174603
Highfort	0.720588235	0.720588235	0.720588235	0.720588235	0.720588235
The Shard	0.460992908	0.460992908	0.460992908	0.460992908	0.460992908
Metric 1					
Citadel Gate	0.474489796	0.487244898	0.492346939	0.489795918	0.477040816
Overwatch	0.444444444	0.509803922	0.431372549	0.444444444	0.444444444
Sanctuary Bridge	0.423076923	0.467948718	0.397435897	0.423076923	0.416666667
Riverfort	0.46031746	0.492063492	0.444444444	0.507936508	0.523809524
Highfort	0.367647059	0.470588235	0.323529412	0.382352941	0.397058824
The Shard	0.539007092	0.553191489	0.574468085	0.531914894	0.574468085
Metric 2					
Citadel Gate	0.474489796	0.487244898	0.492346939	0.489795918	0.479591837
Overwatch	0.437908497	0.503267974	0.437908497	0.444444444	0.437908497
Sanctuary Bridge	0.41025641	0.455128205	0.397435897	0.429487179	0.403846154
Riverfort	0.46031746	0.492063492	0.444444444	0.492063492	0.53968254
Highfort	0.382352941	0.441176471	0.323529412	0.382352941	0.382352941
The Shard	0.539007092	0.553191489	0.567375887	0.524822695	0.553191489
Metric 3					
Citadel Gate	0.474489796	0.487244898	0.492346939	0.489795918	0.477040816
Overwatch	0.444444444	0.509803922	0.431372549	0.444444444	0.444444444
Sanctuary Bridge	0.423076923	0.467948718	0.397435897	0.423076923	0.416666667
Riverfort	0.46031746	0.492063492	0.444444444	0.507936508	0.523809524
Highfort	0.367647059	0.470588235	0.323529412	0.382352941	0.397058824
The Shard	0.539007092	0.553191489	0.574468085	0.531914894	0.574468085
Metric 4					
Citadel Gate	0.466836735	0.471938776	0.471938776	0.474489796	0.466836735
Overwatch	0.385620915	0.431372549	0.366013072	0.39869281	0.39869281
Sanctuary Bridge	0.378205128	0.403846154	0.371794872	0.378205128	0.391025641
Riverfort	0.428571429	0.412698413	0.396825397	0.46031746	0.492063492
Highfort	0.352941176	0.426470588	0.338235294	0.323529412	0.382352941
The Shard	0.510638298	0.510638298	0.531914894	0.503546099	0.539007092

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime \prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,50,10,3)(2,20,50,16,6)(2,20,50,24,5)(2,20,50,22,5)(2,20,50,22,8)$

Baseline					
Citadel Gate	0.528061224	0.528061224	0.528061224	0.528061224	0.528061224
Overwatch	0.594771242	0.594771242	0.594771242	0.594771242	0.594771242
Sanctuary Bridge	0.666666667	0.666666667	0.666666667	0.666666667	0.666666667
Riverfort	0.603174603	0.603174603	0.603174603	0.603174603	0.603174603
Highfort	0.720588235	0.720588235	0.720588235	0.720588235	0.720588235
The Shard	0.460992908	0.460992908	0.460992908	0.460992908	0.460992908
Metric 1					
Citadel Gate	0.487244898	0.487244898	0.487244898	0.484693878	0.482142857
Overwatch	0.424836601	0.45751634	0.437908497	0.444444444	0.418300654
Sanctuary Bridge	0.429487179	0.403846154	0.403846154	0.41025641	0.429487179
Riverfort	0.523809524	0.492063492	0.507936508	0.507936508	0.571428571
Highfort	0.455882353	0.367647059	0.411764706	0.411764706	0.426470588
The Shard	0.524822695	0.524822695	0.524822695	0.546099291	0.496453901
Metric 2					
Citadel Gate	0.487244898	0.484693878	0.484693878	0.479591837	0.471938776
Overwatch	0.418300654	0.444444444	0.444444444	0.444444444	0.392156863
Sanctuary Bridge	0.429487179	0.397435897	0.416666667	0.41025641	0.423076923
Riverfort	0.523809524	0.492063492	0.492063492	0.492063492	0.571428571
Highfort	0.455882353	0.382352941	0.441176471	0.411764706	0.426470588
The Shard	0.531914894	0.524822695	0.517730496	0.553191489	0.503546099
Metric 3					
Citadel Gate	0.487244898	0.487244898	0.487244898	0.484693878	0.479591837
Overwatch	0.424836601	0.45751634	0.437908497	0.444444444	0.418300654
Sanctuary Bridge	0.429487179	0.403846154	0.403846154	0.41025641	0.429487179
Riverfort	0.523809524	0.492063492	0.507936508	0.507936508	0.571428571
Highfort	0.455882353	0.367647059	0.411764706	0.411764706	0.426470588
The Shard	0.524822695	0.524822695	0.524822695	0.546099291	0.496453901
Metric 4					
Citadel Gate	0.471938776	0.471938776	0.474489796	0.464285714	0.469387755
Overwatch	0.385620915	0.385620915	0.385620915	0.39869281	0.385620915
Sanctuary Bridge	0.365384615	0.397435897	0.384615385	0.384615385	0.378205128
Riverfort	0.476190476	0.492063492	0.46031746	0.428571429	0.444444444
Highfort	0.397058824	0.411764706	0.411764706	0.397058824	0.441176471
The Shard	0.496453901	0.503546099	0.539007092	0.531914894	0.510638298

$\left(\mathrm{t}, \mathrm{t}^{\prime}, \mathrm{t}^{\prime}, \mathrm{K}_{1}, \mathrm{~K}_{2}\right) \quad(2,20,50,22,9) \quad(2,20,50,23,7) \quad(2,20,50,21,7) \quad$ Mean

Baseline

Citadel Gate	0.528061224	0.528061224	0.528061224	0.528061224
Overwatch	0.594771242	0.594771242	0.594771242	0.594771242
Sanctuary Bridge	0.666666667	0.666666667	0.666666667	0.666666667
Riverfort	0.603174603	0.603174603	0.603174603	0.603174603
Highfort	0.720588235	0.720588235	0.720588235	0.720588235
The Shard	0.460992908	0.460992908	0.460992908	0.460992908
Metric 1				
Citadel Gate	0.477040816	0.489795918	0.492346939	0.485969388
Overwatch	0.450980392	0.437908497	0.450980392	0.441902687
Sanctuary Bridge	0.423076923	0.416666667	0.416666667	0.42022792
Riverfort	0.492063492	0.53968254	0.492063492	0.501763668
Highfort	0.397058824	0.426470588	0.397058824	0.406045752
The Shard	0.524822695	0.560283688	0.574468085	0.549251379
Metric 2	0.479591837	0.489795918	0.494897959	0.485685941
Citadel Gate	0.444444444	0.431372549	0.431372549	0.436456064
Overwatch	0.423076923	0.397435897	0.416666667	0.415954416
Sanctuary Bridge	0.492063492	0.53968254	0.523809524	0.507936508
Riverfort	0.382352941	0.441176471	0.426470588	0.407679739
Highfort	0.517730496	0.567375887	0.560283688	0.546493302
The Shard				

Metric 3

Citadel Gate	0.477040816	0.489795918	0.492346939	0.485827664
Overwatch	0.450980392	0.437908497	0.450980392	0.441902687
Sanctuary Bridge	0.423076923	0.416666667	0.416666667	0.42022792
Riverfort	0.492063492	0.53968254	0.492063492	0.501763668
Highfort	0.397058824	0.426470588	0.397058824	0.406045752
The Shard	0.524822695	0.560283688	0.574468085	0.549251379
Metric 4				
Citadel Gate	0.469387755	0.489795918	0.477040816	0.472647392
Overwatch	0.392156863	0.418300654	0.379084967	0.394335512
Sanctuary Bridge	0.397435897	0.358974359	0.391025641	0.379273504
Riverfort	0.412698413	0.476190476	0.46031746	0.447971781
Highfort	0.426470588	0.455882353	0.382352941	0.390522876
The Shard	0.510638298	0.531914894	0.517730496	0.520094563

[^0]: ${ }^{1}$ This description of level design was stated during a presentation by Daniel Molnar, a level design manager at Ubisoft Reflections on 06/03/2018.

[^1]: ${ }^{1}$ Usually measured in microsiemens $(\mu \mathrm{S})$.

[^2]: ${ }^{1}$ The following link contains gameplay footage of a typical Dominion match: https://www. youtube.com/watch?v=sp3NKQlJPuo

