
Evaluation of Game Level Design

Using Machine Learning
submitted by

Azeem Ahmed Khan

for the degree of Doctor of Engineering

of the

University of Bath

Department of Computer Science

September 2021

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author .

Azeem Ahmed Khan

Abstract

Game level designers need to know whether the levels they generate will fulfil the desires

of their audience. The main goal of the work presented in this thesis is to build a tool

which can assist a level designer as they work, providing them with real-time evaluation

by predicting how much enjoyment their design will bring about in prospective players.

This tool is built via the application of data mining and machine learning algorithms to

gameplay, level geometry and feedback data.

Telemetry data from playthroughs of the medieval action game For Honor is collected.

This data includes player positions and actions, as well as information about the level

geometry surrounding the players. The feedback submitted at the end of each match

is also gathered. Feature representation is then used to express these playthroughs as

a series of moments. We explore two distinct methods of interpreting the influence of

these moments on the given rating:

1. Using Weakly Supervised Learning to identify the single most influential moment

within each playthrough.

2. Building an ensemble of probabilistic regressors so the influence of all moments are

taken into account.

The moments and their corresponding ratings are fed into a neural network which takes

geometry as input and outputs some metric representing the predicted rating. The

trained model evaluates a game level by visualising the feedback in the form of a “heat

map of enjoyment”, highlighting the areas of the level that will lead to high or low

amounts of enjoyment. The accuracies of these heat maps are assessed by comparing

them to coloured maps produced by users who participated in a study.

Our results show that both methods produce heat maps which are in good agreement

with the user maps for at least one user. However the outputs of method 2 are less

susceptible to noise and, unlike method 1, did not suffer from overfitting during the

training process.

1

Acknowledgements

This thesis would not have been possible without the help of many people. To my

parents, thank you so much for supporting me throughout my education.

I would like to express my gratitude to my academic supervisor Dr Tom Fincham Haines

for his patience and clarity when explaining complex concepts, as well as his guidance

throughout the entire project. I would also like to thank the University of Bath and the

Centre for Digital Entertainment for providing me the opportunity to do this course.

Many thanks are given to my supervisors at Ubisoft Reflections as well as others who

oversaw the project: Michael “Mike” Troughton, Michele Condò, Mark Leadbeater,

Dario Sancho, Gilles Matouba and Jose Parades. I would especially like to express my

gratitude to Mike for granting me the opportunity to undertake research at a company

whose games I used to play as a child; his invaluable help in directing me to the relevant

people and resources within the company, and encouraging me to participate in Ubisoft’s

internal events to present my work. I also cannot thank Michele enough for his support

and enthusiasm for the project, as well as his influence in starting my career at Ubisoft

Reflections.

I want to thank Vincent Gagnon and his team at Ubisoft Montréal for granting us

access to their data and materials, without which our research could not have been

accomplished.

Special thanks to the people who took the time to participate in our user study, your

feedback has been extremely useful in justifying our results.

I also appreciate the assistance by Lee Donaldson from IT, who worked hard to set up

an extra machine allowing me to gather results much more quickly.

2

Contents

List of Figures 6

List of Tables 9

List of Acronyms 11

1 Introduction 13

1.1 Background . 13

1.2 Research Problem Overview . 16

1.3 Aims & Objectives . 17

1.4 Industrial Context . 18

1.5 Research Outputs . 18

1.6 Document Roadmap . 18

2 Literature Review 21

2.1 Modelling Player Experience . 21

2.1.1 Qualitative Approaches . 21

2.1.2 Quantitative Approaches . 28

2.2 Evaluating Levels — the Sentient Sketchbook 38

2.3 Weakly Supervised Learning . 44

3 Experimental Design 50

3.1 The Game . 50

3.1.1 Requirements . 50

3.1.2 Description . 51

3.2 Data Collection . 52

3.2.1 Playthroughs . 53

3.2.2 User Feedback . 56

3

4 Methodology 59

4.1 Feature Representation . 61

4.1.1 Player Motion . 62

4.1.2 Local Geometry . 63

4.1.3 Zero-meaning & Clustering . 65

4.1.4 Player Actions & Clustering . 68

4.2 Moment Detection — Weakly Supervised Learning 69

4.2.1 Multiple Instance Learning . 69

4.2.2 Model Training . 71

4.2.3 Predicting Playthrough Feedback 72

4.3 Moment Detection — Probabilistic Regression Ensemble 73

4.3.1 Further Clustering . 74

4.3.2 Cluster Voting for Predicting Playthrough Feedback 76

4.3.3 Model Training for Level Evaluation 77

4.4 Heat Map Generation . 79

4.5 Algorithm Performance . 81

5 Results and Discussion 85

5.1 Evaluating Maps . 85

5.2 Predicting Playthrough Feedback . 94

6 Conclusion 98

6.1 Limitations . 98

6.2 Extensions . 99

6.3 Impact . 100

6.4 Outlook . 100

Appendix A — User Study Instructions 111

Appendix B — Summarised User Feedback 112

Appendix C — Genetic Algorithm Implementation 124

Appendix D — Negative Dirichlet Loss 125

Appendix E — Preliminary Map Evaluation Results by Geometry Capture

Metric 126

4

Appendix F — Full Results 129

5

List of Figures

1.1 The four key components of the EDPCG framework, adapted from [76]. . 14

1.2 Pipelines for the two methodologies used in the project. 20

2.1 Game interest according to equation (2.7) over the number of online

learning games for each of the ghost behaviours. Taken from [72]. 32

2.2 A child playing the bug-smasher game, taken from [73]. 34

2.3 GSR responses against time for specific game events for certain participants.

Taken from [37]. 36

2.4 Graph showing the correlation between normalised GSR and normalised

fun. Taken from [38]. Note: the participants have been ordered according

to normalised fun, however the lines drawn between the points carry no

meaning. 37

2.5 User interface of Sentient Sketchbook. The user draws a sketch on the left,

the suggestions are on the right, and the evaluations are in the middle.

Taken from [31]. 38

2.6 Map sketch with the corresponding RTS level. White tiles represent bases,

cyan tiles are resources and dark tiles are impassable. Taken from [34]. . . 39

2.7 Map sketch with the corresponding roguelike dungeon level. White tiles

represent entrances/exits, cyan tiles are enemies and dark tiles are impassable.

Taken from [47]. 39

6

2.8 Sample metrics for a map sketch (a) with SM (stars), SN (triangles) and

impassable tiles (black). The purple star is closer to the blue triangle than

the red triangle, therefore it has a high safety value. The other stars are

either equally close to (green star) or equally far away from (brown star)

both triangles, therefore they have low safety values. For map coverage of

safe tiles from the red and blue triangles (b), A1 is shown in red and A2

in blue. For map coverage during exploration (c and d), the exploration

from the red triangle to the blue triangle E1→2 is shown in red, while that

from the blue to the red E2→1 is shown in blue. Taken from [32]. 42

2.9 Examples of automated annotation of training data using different MIL

algorithms. Taken from [56]. 44

2.10 Test data detection precision recall curve, taken from [56]. AP = Average

Precision. Cross data results as published in [9]. 45

2.11 Initial instances generated for an image to be used in an MIL algorithm,

taken from [62]. 47

2.12 Results using intra-class, negative mining (N), saliency (φ) and combined

negative mining and saliency methods, taken from [55]. 48

3.1 Screenshot of the game For Honor. Image approved for public use by

Ubisoft. 51

3.2 Top-down illustration of a typical player path (black line) through a level,

their estimated orientation at each position (green arrow) and ray-casting

from one of the positions (red arrowed lines). 54

3.3 A UV sphere (yellow) at one of the player positions in a playthrough, with

its corresponding map. Every smaller red sphere represents a point where

a ray is emitted. 55

3.4 Example of a coloured map produced by a user for use as ground truth

to evaluate the performance of our feedback tool. Areas highlighted in

green (red) are those the user deemed to be good (bad), while areas left

uncoloured are considered neutral. 56

3.5 Overview of the For Honor maps used in the project, with Dominion

spawn locations (orange and blue) and capture points (black), taken from

[23]. 58

4.1 Graph showing percentage of playthroughs for each rating which resulted

in a win/loss. 59

7

4.2 Illustration of how a playthrough is divided into chunks with a 50% overlap. 61

4.3 Illustration of two ray casting methods to capture the geometry surrounding

the player. 64

4.4 Illustration of zero-meaning two x-position sequences in two different

locations of a 1-D platformer. After zero-meaning, the resultant arrays are

identical, allowing the PCA algorithm to interpret these as two identical

motions . 66

4.5 Results of PCA (a) and applying different clustering algorithms to them

(b-d). The distribution of the points is centered on (0,0) due to zero-meaning

and possibly a high frequency of occurrences of the players standing still.

The apparent drifting of points to the right is likely due to the presence

of bounties in the data, as these are always equal to or greater than zero. 67

4.6 Inferred motions from using windows with w = 6 and κ1 = 20. 68

4.7 The 2-fold PCA and clustering method used for processing the data. In

this example κ1 = 8 and κ2 = 5. 68

4.8 Diagram of WSL being carried out on a pair of playthrough sets to extract

“good” moments (orange), and on another pair to extract “bad” moments

(blue). The star ratings of the playthroughs in each set is shown on top. . 71

4.9 Graphical visualisation of optimisation during regression model training

for WSL method. 72

4.10 Result of applying PCA to the moment histograms, where each moment

(datapoint) is colour coded according to the rating of its playthrough. . . 74

4.11 Diagram showing how the PRE method involves taking playthroughs with

their corresponding ratings (left), applying clustering to their moments

(middle), resulting in probability distributions over the ratings (right). . . 75

4.12 Frame from animation of playthroughs in terms of clustered moments —

each point represents a specific type of moment and the lines represent

the transitions between those moments as the playthrough occurs. The

colour of the cluster represents its 5-star rating. 75

4.13 Graphical visualisation of optimisation during regression model training

for the PRE method. 78

4.14 Illustration of heat map construction for map evaluation: two random

paths have been plotted on a mesh, with ray casting at each point hitting

the closest vertices, and the colouring of the triangles corresponding to

the predicted feedback of those paths. Green represents positive feedback,

red negative, with yellow indicating an even mixture of the two. 79

8

4.15 An example of a rendered heat map, where the vertices have been coloured

according to the predicted normalised scores of the random paths plotted

within their vicinity. 80

4.16 Illustration of Jaccard index for bounding boxes in computer vision, taken

from [49]. An index of greater than 0.5 starts to indicate strong agreement. 81

4.17 The CDF of an algorithmic heat map. 82

4.18 The inverse CDF of a user map. 82

4.19 An example of an algorithmic heat map on Citadel Gate, and the resultant

heat map from transforming it via the CDF of a given user’s map. 83

4.20 Image masks for the heat map in Figure 4.19d. 84

5.1 Histograms of accuracies, expressed as percentages, for each map across

all users (WSL). 87

5.2 Histograms of accuracies, expressed as percentages, for each map across

all users (PRE). 88

5.3 Histograms of accuracies, expressed as percentages, for the BMU across

all maps (WSL). 89

5.4 Histograms of accuracies, expressed as percentages, for the BMU across

all maps (PRE). 90

5.5 Histograms of accuracies, expressed as percentages, for the WMU across

all maps (WSL). 91

5.6 Histograms of accuracies, expressed as percentages, for the WMU across

all maps (PRE). 92

5.7 Scatter plots of heat map accuracies for all users and their maps under

the optimal hyperparameter configurations, where the users have been

ordered by their lowest accuracy, and colour coded according to their role

within the industry. 93

.13 Heat Map Accuracy Results (method 1). 130

.14 Heat Map Accuracy Results (method 2). 132

.15 Playthrough Prediction Training Accuracies (Method 1). 134

.16 Playthrough Prediction Test Accuracies (Method 1). 138

.17 Playthrough Prediction Training Accuracies (Method 2 — Multinomial). . 142

.18 Playthrough Prediction Test Accuracies (Method 2 — Multinomial). . . . 146

.19 Playthrough Prediction Training Accuracies (Method 2 — Binary). 150

.20 Playthrough Prediction Test Accuracies (Method 2 — Binary). 154

9

List of Tables

2.1 Analogue concepts in three different qualitative models of player experience. 27

2.2 Metrics used in level evaluation for Sentient Sketchbook, along with what

they correspond to in RTS and roguelike dungeon games. 42

3.1 No. of playthroughs associated with each For Honor map. 53

4.1 Results of computing the correlation between player win/loss and the

rating given at the end of the match. 61

5.1 Baseline accuracies for training and testing playthrough sets. 94

5.2 Training accuracies for predicting playthroughs using WSL. 95

5.3 Test accuracies for predicting playthroughs using WSL. 95

5.4 Training accuracies for predicting playthroughs using PRE via a multinomial

model. 96

5.5 Test accuracies for predicting playthroughs using PRE via a multinomial

model. 96

5.6 Training accuracies for predicting playthroughs using PRE via a binary

model. 96

5.7 Test accuracies for predicting playthroughs using PRE via a binary model. 97

1 Map Proximity. 126

2 Nested Spheres. 127

3 Intersection Distance. 127

4 Log-distance. 128

10

List of Acronyms

2-AFC 2-Alternative Forced Choice.

ANN Artifical Neural Network.

AV Arousal-valence.

BMU Best Matched User.

BOW Bag-of-Words.

BP Blood Pressure.

BSP Binary Space Partitioning.

CDE Centre for Digital Entertainment.

CDF Cumulative Distribution Function.

CET Cognitive Evaluation Theory.

CNN Convolutional Neural Network.

ECG Electrocardiogram.

EDPCG Experience Driven Procedural Content Generation.

EMG Electromyography.

GA Genetic Algorithm.

GSR Galvanic Skin Response.

HCI Human-Computer Interaction.

11

HMA Heat Map Accuracy.

HR Heart Rate.

IoU Intersection over Union.

MDA Mechanics Dynamics Aesthetics.

MIL Multiple Instance Learning.

NEA2 Niching Evolutionary Algorithm 2.

NNN Negative Nearest Neighbour.

NPC Non-playable Character.

PCA Principal Component Analysis.

PCG Procedural Content Generation.

PEM Player Experience Modelling.

PENS Player Experience of Need Satisfaction.

PRE Probabilistic Regression Ensemble.

RTS Real Time Strategy.

SDT Self-determination Theory.

STIP Spatio-Temporal-Interest-Point.

TCTD Tom Clancy’s The Division.

UPEQ Ubisoft Perceived Experience Questionnaire.

VTK Visualization Toolkit.

WMU Worst Matched User.

WSL Weakly Supervised Learning.

12

Chapter 1

Introduction

The goal of the work presented in this thesis is to build a tool which can assist a level

designer as they work, evaluating their creation in real-time by visualising the amount

of predicted enjoyment it will elicit in potential players. This is meant to address the

problem of subjectivity in game level design; the differing opinions of designers warrant

a more neutral source of evaluation. Therefore we apply machine learning to gameplay,

level geometry and feedback data. The resultant trained models are used to predict the

feedback of a given level, and the accuracy of this prediction is measured by comparing

its output to that of human users.

1.1 Background

The video game industry has experienced substantial growth since the release of Pong

and Space Invaders in the 1970s. Video games may have experienced their greatest

evolution during the 1990s, with the advent of CDs through which software could be

stored and distributed, as well as advancements in 3D computer graphics which became

the standard for visual representation in games [35]. The 21st century has seen the

emergence of independent game development as well as the use of virtual reality and

motion capture in video games, bringing them to the same level as films in terms of how

they are viewed as a form of entertainment. In fact, games have begun to surpass films as

the best-selling media [16]. As games have evolved in terms of graphics and play time, the

effort and manpower that goes into their development has constantly increased. It is now

more common for a AAA game to be developed by hundreds of people over a period of

a year or more, leading to fewer profits [54]. However automation of certain components

would substantially shorten development costs — a major motivation for Procedural

13

Content Generation (PCG). This is defined as “the algorithmic creation of game content

with limited or indirect user input” [63]. PCG was used as a solution to the limited space

in which content could be stored in early games; a classic example of its use is Rogue,

a 1980s dungeon-crawling game in which levels are randomly generated every time a

new game starts [54]. PCG can also help level designers be more creative, as algorithms

can produce content which is vastly different from that of a human designer. Large

game companies such as Ubisoft have benefited from automating content generation, for

example the successful launch of Tom Clancy’s The Division (TCTD) can be attributed

to the creation of a PCG design tool. The key difference to typical PCG technologies

is that the play environment was created to satisfy the needs of gameplay, rather than

trying to fit gameplay into a procedurally generated world [58].

Player Experience

Modelling (PEM)

Evaluating Content

Quality

Representing ContentGenerating Content

Figure 1.1: The four key components of the EDPCG framework, adapted from [76].

A more exciting prospect of PCG is that the generated content can be tailored to the

desires of the user playing the game. This is known as Experience-driven Procedural

Content Generation (EDPCG) and it consists of four key components [76] which are

illustrated in Figure 1.1. The top two components will be the main areas covered in this

thesis.

1. Player Experience Modelling (PEM) - this can be performed using three different

14

kinds of extracted data:

� Subjective — this involves the use of interviews or surveys where the questions

can be asked during gameplay (free-response) or afterwards (forced-response).

� Objective — here the physiological responses and bodily expressions of the

player are monitored and analysed. One can either use existing emotional

models derived from emotion theories (model-based), or construct some unknown

mapping between player input and emotional state (model-free).

� Gameplay-based — an analysis of the player’s in-game actions, either via

a general framework of behavioural analysis (model-based) or identifying

patterns in the data to predict player intentions (model-free).

2. Evaluating Content Quality — an evaluation function is needed to assess a level

and assign a value reflecting its quality or suitably for use in a game. This function

is created depending on what a designer wishes to optimise, and falls into one of

three classes [64]:

� Direct evaluation functions — these directly map extracted features (e.g. number

of entry points, firing rate) to a quality value. They can be either data-driven

(collecting data and using algorithms to map from content to player experience

and then to an evaluation function), or theory-driven (where the designer

relies on intuition or some qualitative theory to perform this mapping).

� Simulation-based evaluation functions — this involves allowing an artificial

agent to play through the level being evaluated, then extracting features from

the agent’s performance. These functions can be static (the agent is assumed

to not change during the game) or dynamic (the agent changes and the quality

value incorporates this change).

� Interactive evaluation functions — in this, the quality value is based on the

player-game interaction. Here the quality is evaluated during actual gameplay,

and data can be gathered either explicitly (questionnaires or verbal cues) or

implicitly (monitoring eye-gaze fixation, facial expressions, time the player

quit e.t.c.).

3. Representing Content — the content of a game needs to be represented in a way

which improves the efficiency, performance and robustness of a generator. This

could be symbolically within a tree or graph data structure. Different representations

can be distinguished by how directly or indirectly they are encoded. As an example

15

one can consider a level in a 2D platform game - this can be directly represented as a

2D grid where the contents of each cell is specified. A more indirect representation

could be a list of positions, shapes, enemies and items. In the case of TCTD,

content representation was in the form of a high level script that outlined key

aspects of a mission template.

4. Generating Content — the generator needs to search within a resulting search

space for content that maximises particular aspects of a player’s experience. The

more direct the representation, the larger the search space. For TCTD multiple

different underground dungeons were generated that satisfied the aforementioned

mission template.

EDPCG could be instrumental in closing the affective loop in games — a human-computer

interaction (HCI) goal in which an artificial system understands and reacts to a user’s

emotional state [60].

1.2 Research Problem Overview

It was discussed in the previous section that PEM and content quality evaluation are

key parts of the EDPCG framework. The link between these two parts is especially

important to level designers; in order for them to have a measure of how enjoyable their

levels are and produce successful games, they must be able to know what players enjoy.

A game level consists of various elements/artifacts which can be arranged in a number

of different ways — this is the game content [51]. However the level is meaningless

unless someone actually plays it and has an interactive experience within it. This is

ultimately what the level designer cares about when working — the player experience.

Unfortunately this presents another challenge — experiences cannot be directly measured,

only described. Many level designers will use introspection i.e. use their own experiences

as a basis for creating levels; others may decide that only playtesting i.e. the experiences

of others can be trusted [53]. Each of these methods has its own flaws: the former only

relies on one person’s opinions, and some level designers may have unpopular tastes. The

latter relies on a process that occurs infrequently during game development, in addition

to the fact that there must already be a working game to playtest. In many cases, a

designer may be given certain guidelines or criteria to fulfil when tasked with creating

levels e.g. create a race track which lasts at least X seconds per lap [39]. However even

these can be vague. This is a fundamental problem that exists within level design — it

is a subjective discipline because different people will have different views on whether a

16

level is good or bad 1. The point at which a level is played in relation to others e.g. in

an open world game where side missions can be played in almost any order, can also

affect a given player’s opinion. Additionally a player may not be able to effectively

dissect their experience and articulate why they found a particular level fun, therefore

providing the level designer with insufficient information about how they could improve

the level. Even the concept of “fun” has multiple meanings, making it difficult to fully

capture what is happening in terms of keeping the player motivated [51]. For example

game designer Marc LeBlanc defined eight types of fun: sense-pleasure, make-believe,

drama, obstacle, discovery, self-discovery and expression, social framework and surrender

[26]. When a player gives their feedback after experiencing a level, it is based on their

personal conception of fun. This feedback potentially links to the structural design of

the level, and machine learning could be the key to extracting this relationship.

1.3 Aims & Objectives

The goal of this project is to create a tool that can provide real-time feedback to a level

designer as they work, giving them information as to which areas of the proposed level

will result in the most enjoyable experiences for potential players. The system will learn

the relationship between level structure and player enjoyment, via the application of

machine learning and data mining to existing level playthroughs as training data. This

information will also be used to attempt to predict the feedback of playthroughs. The

main objectives of the project are as follows:

� Collect data from play sessions and maps of a particular game, most importantly

level geometry and player feedback.

� Simplify and convert the data into a suitable representation.

� Identify key moments which most strongly influenced player feedback.

� Train a model which can predict feedback based on level geometry.

� Visualise the predicted feedback in a form helpful to designers.

1This description of level design was stated during a presentation by Daniel Molnar, a level design
manager at Ubisoft Reflections on 06/03/2018.

17

1.4 Industrial Context

The work presented in this thesis is the culmination of a collaboration between Ubisoft

Reflections and the Centre for Digital Entertainment (CDE).

Based at the University of Bath and Bournemouth University, the CDE is a doctoral

training centre which funds research students in fields such as games, animation and

visual effects [10]. These students are usually based at companies requiring these skills on

an industrial placement, using concepts they have studied in academia to solve problems

within industry.

Ubisoft Reflections is a game development studio based in Newcastle Upon Tyne in

the United Kingdom. It is part of Ubisoft, one of the largest video game publishers in

the world. The studio has collaborated with other Ubisoft studios around the world to

create many AAA games such as Far Cry 5 and Assassin’s Creed Syndicate. It is also

responsible for the creation of smaller games such as Grow Up and Atomega [65].

1.5 Research Outputs

The following is a list of research outputs of the work presented in this thesis.

Event Title Format

CVMP 2018 Evaluating the “fun” Factor of Levels Poster

CVMP 2019 Data-driven Game Content Evaluation Poster

CVMP 2020
Evaluating the Content Quality of Game

Levels
Poster

LaForge Open

House 2021
Evaluating the Content Quality of Levels

Poster &

Presentation

UDS 2021
Data-driven Content Evaluation for Level

Designers
Presentation

1.6 Document Roadmap

So far this thesis has introduced game content evaluation within the context of EDPCG,

and outlined a data-driven method for achieving this. Chapter 2 is a comprehensive

literature review concerning the existing research in the fields of PEM and level evaluation,

as well as other key concepts involved in the project.

Chapter 3 describes the game which was used for the project and the specific types

of data which were collected from it, for both training the system and assessing its

18

performance.

Chapter 4 goes into detail about the implementation of the algorithms used to complete

each objective in the project’s pipeline. It begins with feature representation before

branching off into two separate methods for selecting the most important features (moment

detection), and showing how these are used to train models for PEM and generating

visualisations of the model predictions. This also includes the visual outputs of each

step. Figure 1.2 illustrates a way in which the two distinct moment detection methods

produce two separate pipelines within the project.

Chapter 5 concerns the final results produced by both of the presented methods, specifically

an analysis of the system’s performance associated with both level evaluation and predicting

playthrough feedback.

Chapter 6 concludes the thesis by first summarising what has been achieved, before

describing the limitations of the project; how these may have affected the performance,

and how these may be overcome. It then proposes potential extensions to the project,

and how they may be pursued. Finally the impact and implications that this project

has on the field of level design and the game industry as a whole is discussed.

19

Data Collection

Feature

Representation

Weakly

Supervised

Learning

Model

Training

Predicting

Playthrough

Feedback

Level

Evaluation

(a) Weakly Supervised Learning.

Data Collection

Feature

Representation

Probabilistic

Regression

Ensemble

Model

Training

Predicting

Playthrough

Feedback

Level

Evaluation

(b) Probabilistic Regression Ensemble.

Figure 1.2: Pipelines for the two methodologies used in the project.

20

Chapter 2

Literature Review

It has been stated that the two components of experience-driven procedural content

generation (EDPCG) which will be discussed in this thesis are player experience modelling

(PEM) and evaluating content quality. This is because in order to evaluate levels on

their enjoyment potential, one must have a way of modelling how the features of those

levels translate into player enjoyment. This chapter begins by reviewing the various

approaches to PEM over the last several decades. We then discuss the features of

an existing level evaluation tool - the Sentient Sketchbook. Finally since one of our

approaches uses the machine learning technique known as Weakly Supervised Learning,

this concept is introduced and explained using examples of studies in which it has been

applied to images and videos.

2.1 Modelling Player Experience

There has been much research into modelling or evaluating the entertainment value of

games i.e. identifying what aspects of a game engage the people who play them, and

cause them to enjoy the experience. Many of these are rooted in psychological and HCI

studies.

2.1.1 Qualitative Approaches

Thomas Malone carried out a series of studies to investigate the features that make

games so captivating, and how these features can be used to create environments in

which students are motivated to learn as efficiently and effectively as possible. These

studies involved surveying the computer game preferences of elementary students, and

testing multiple versions of certain games, differing in their focus on specific features.

21

According to Malone, the characteristics of intrinsically motivating environments fall

under one of three categories [36]:

� Challenge — an environment is challenging when it has multiple goals, with

uncertain outcomes to keep the player engaged and motivated. Also an environment

should have a variable difficulty level so the learner can work at a level appropriate

to their ability this also ensures that their self-esteem is not lowered to the point

where they are disinterested in the game.

� Curiosity — environments should be novel and surprising, but not completely

incomprehensible. This can be divided into two types: sensory curiosity and

cognitive curiosity. The former refers to how changes in light, sound or sensory

stimuli of an environment attract the attention of the user. The latter refers to

presenting the user with just enough information to make their existing knowledge

seem incomplete, thus engaging their curiosity and encouraging them to learn more.

� Fantasy — this refers to mental images created by the player as a result of

their interaction with the game environment. Fantasies can be both intrinsic and

extrinsic, with the intrinsic being more interesting and instructional. A cognitive

advantage of intrinsic fantasies is their ability to improve the memorability of the

material by provoking vivid images related to it.

The above principles were applied to existing educational tools, turning them into

learning games in order to improve their quality and effectiveness [36]. The challenge and

curiosity categories were also used as the basis for Yannakakis and Hallam’s experiments

to derive quantitative models of entertainment, for both computer games [70] and

physical games [71]. These are discussed in further detail in Section 2.1.2.

In 2004 Nicole Lazzaro performed a field study in which adults were asked to share

their thoughts and feelings while playing their favourite game. This was in order to

know more about the role of emotion in games, and mechanisms other than cut scenes

which evoke these emotions [29]. To obtain the opinions of non-gamers, the friends and

family of the participants were also interviewed. Three types of data were collected:

video recordings of players during play sessions, questionnaire responses and emotional

cues (such as facial expressions) during gameplay. Lazzaro concluded that what players

like about games falls into four “keys of emotion” [29]:

� Player (Internal experience key) — how the game makes them feel inside, as well as

changes in their internal state during and after play. This focuses on how the game

22

aspects create emotions inside the player. The kinds of players which fall under

this category said they like clearing their mind by completing the level, avoiding

boredom and feeling better about themselves.

� Hard fun (Challenge and strategy key) — people play games to overcome obstacles.

The game creates emotion by structuring the experience towards the pursuit of

some goal. Players who fell more into this key said they like playing to assess how

good they are; playing to beat the game; having multiple objectives and winning

through strategy rather than luck.

� Easy fun (Immersion key) — this key focuses on the enjoyment of experiencing

the game. Focus is maintained with the player’s attention rather than a winning

condition. It entices the player to consider their options and investigate more.

Players falling into this category said they enjoy exploring new worlds, excitement

and adventure, and seeing what happens in the story.

� Other players (Social experience key) — this refers to enjoyment from playing with

others inside or outside the game. Some participants admitted that they might

play games they don’t like in order to spend time with friends. Players to which

this key applies see games as mechanisms for social interaction — they say it is

the people who are addictive, not the game. They also want an excuse to invite

friends over. Even though they don’t play games, they enjoy watching others play.

Arriving at these four factors involved observing emotions produced during gameplay via

facial gestures, body language and verbal comments [29]. Lazzaro’s “fun clustering” was

the inspiration for Raph Koster’s personal breakdown of player enjoyment [26]. Koster

suggested that games are primarily a learning experience; the enjoyment experienced

during a game is a result of the brain being taught new and interesting patterns, therefore

games focus mostly on hard fun. Our approach investigates the link between enjoyment

and the geometry of a level, and hence leans towards the easy fun factor more so than

it does towards the others.

The MDA framework defined by Hunicke et al. divides games into three separate

components [21]:

� Mechanics — this describes the game in terms of data representation and algorithms,

and may include things such as the basic rules of the game and the information

that goes into constructing it.

23

� Dynamics — this describes the way the game actually plays based on the mechanics

i.e. the events that occur within the game as experienced by the player.

� Aesthetics — this describes the desirable emotional responses in the player as

they interact with the game. Within aesthetics, elements that make the game

attractive include sensation (when the player experiences something unfamiliar);

fantasy (getting caught up in an imaginary world); narrative (an engaging story);

challenge (the need to master something); fellowship (forming and actively taking

part in a community); discovery (the player’s need to explore); expression (playing

to their creativity or leaving their mark) and submission (referring to the game

as a pastime) [1]. Games possess multiple of these aesthetic elements to various

degrees.

The MDA model is very useful for understanding the way games work — it is simplistic

but offers a sufficient distinction between various elements of a game, and highlights

the ways in which games are systems rather than linear pre-determined structures like

books or films. There are limitations to this framework — it does not take into account

things like the context in which one plays the game or the culture which frames the

game [13]. However from a design perspective, the aesthetic elements have large overlap

with procedural content generation (PCG) — some have been explored with PCG while

others may provide the basis for new PCG systems [57].

There are many models which have been developed to explain and analyse media enjoyment.

Disposition theory relates attitudes toward media characters to moral evaluations of

their actions i.e. enjoyment increases when liked characters are successful and disliked

characters encounter misfortunes [48]. Transportation theory suggests that enjoyment

is heightened by immersion in a narrative world, as well as the consequences of this

immersion [18]. Parasocial interactions refer to the relationship that an audience member

develops with a character by talking to them, imagining or discussing their life. Then

there is cognition, where viewers make judgments on a character’s attributes. Examples

of these could be their ethics, interest and intelligence [42]. However these models

are individually fairly narrow as they understand enjoyment in terms of one concept.

This is where flow theory [11] is advantageous — it is based on the premise that

elements of enjoyment are universal, and can be summarised in a general model. The

concept of flow originates from research conducted by Csikszentmihalyi into what makes

experiences enjoyable. This was based on interviews, questionnaires and other data

collected over the course of twelve years with several thousand participants. According

24

to Csikszentmihalyi, flow consists of eight elements, the combination of which causes

a sense of deep enjoyment so rewarding that people feel it is worth expending a great

deal of energy to achieve it. Sweetser and Wyeth took this concept and adapted it to

computer games, creating the concept of GameFlow [61] which contains the following

elements:

� Concentration — games should provide stimuli from different sources, grab the

player’s attention and maintain their focus.

� Challenge — games should provide challenges which match the player’s skill level,

as well as increasing in difficulty to improve the player’s skill level at an appropriate

pace.

� Player Skills — players should be able to play the game without reading the

manual, instead being taught through tutorials, as well has having access to online

help. Also the interfaces and mechanics should be easy to use.

� Control — players should feel a sense of control over their actions within the game,

as well as feeling that their actions are having a significant impact in the game.

� Clear goals — games should provide the player with clear goals at appropriate

times.

� Feedback — players should receive feedback on their progress, actions and score.

� Immersion — players should become less aware of their real-world surroundings,

as well as becoming emotionally invested in the game and experiencing an altered

sense of time.

� Social Interaction — games should support cooperation between players and social

communities inside and outside the game.

In order to validate the GameFlow elements and their criteria, two fantasy games

(Warcraft 3 and Everquest) were evaluated and compared using expert review. This

was also performed to identify any potential weaknesses or ambiguities in the model.

The games were given a score for each criterion, and these were averaged for each

element. The results were consistent with professional ratings of the games, however

it was acknowledged that some criteria were not applicable to them, or were difficult

to measure without further evaluation e.g playtesting. Given that only two games were

evaluated in this study, the versatility of the model is still unclear. The authors also

25

concluded that the GameFlow criteria could be used as guidelines for expert reviews or

playtesting, but are not suitable for use by game developers as an evaluation tool [61].

Another model for predicting fun/enjoyment is the Player Experience of Need Satisfaction

(PENS) model [50]. Developed by Scott Rigby and Richard Ryan, its roots lie in

more than thirty years of research into human motivation and psychological health,

and seven years of research on games [51]. More specifically it was elaborated from

Self-determination Theory (SDT) — a theory of motivation that concerns intrinsic

and extrinsic motives for acting, as well as the relationship between motivation and

growth/well-being [52]. A mini-theory of this which is only concerned with intrinsic

motivation, known as Cognitive Evaluation Theory (CET), was applied to video games.

Therefore the model is based on the idea that games satisfy specific psychological needs

that exist in potential players; these satisfactions provide the games’ pull. According to

PENS, video games are most successful, engaging and fun when they satisfy the following

intrinsic needs:

� Competence — this refers to the innate desire to grow abilities and gain mastery

of new situations and challenges.

� Autonomy — this reflects one’s inherent desire to take action out of personal

volition and not because one is “controlled” by circumstances.

� Relatedness — this refers to the need to have a meaningful connection to others.

In order to investigate the relations between these needs and game characteristics, several

studies were carried out in which participants were asked to play a game (or multiple

games) and then answer a questionnaire which used a uniform 7-point Lickert-type scale

[52]. The questions themselves were designed to assess how much the players felt that the

above intrinsic needs were satisfied, for example “I felt very capable and effective” or “I

felt controlled and pressured to be a certain way”. These items were averaged to produce

an in-game score corresponding to each intrinsic need. The scores associated with game

variables such as presence (a measure of immersion) and game enjoyment were regressed

on to in-game autonomy and competence simultaneously. The results showed that some

variables were significantly associated with both autonomy and competence, whereas

others only related to one or the other. For relatedness, similar studies were performed

using multiplayer games [52].

It is interesting to note the large amount of overlap between the concepts presented

26

in Lazzaro’s fun factors, GameFlow and PENS — this is summarised in Table 2.1.

For example there is always an element allowing players to improve their skills — this

corresponds to hard fun, challenge and competence in these respective models. Also

the GameFlow concept of control is extremely similar to autonomy in PENS as they

both emphasise the idea of the player choosing their own actions that they believe will

impact the game significantly. This may also be loosely connected to the player factor

in Lazzaro’s model, as the player may feel satisfied knowing it was their choices that

led to successful completion of the game. The social aspect of games i.e. interacting

with other players cooperatively or competitively is also consistently present throughout

all of these models. Finally the GameFlow concept of immersion finds its analogues in

Lazzaro’s easy fun and the presence variable in PENS.

Lazzaro’s factors GameFlow PENS

Player Control Autonomy

Hard fun Challenge Competence

Easy fun Immersion Presence

Other players Social interaction Relatedness

Table 2.1: Analogue concepts in three different qualitative models of player experience.

SDT was used as the basis for a model of motivation defined by Melhart et al. [41] in

cooperation with Ubisoft Massive. Gameplay data was collected from more than 400

players of Tom Clancy’s The Division, along with their reported levels of competence,

autonomy, relatedness and presence using the Ubisoft Perceived Experience Questionnaire

(UPEQ). Four different player types were produced via k-means clustering. Preference

learning was then used to derive a mapping between these player types and UPEQ

responses, then between gameplay and UPEQ responses. Models derived from the latter

mapping proved to be more accurate and robust than those of the former. Our approach

also utilises k-means clustering, and Melhart’s use of it to derive specific player types

could potentially improve our system — this is discussed in further detail in Section 6.2.

Guckelsberger et al. [19] carried out an exploratory study based on empowerment

— a quantity which measures an agent’s influence on its environment, as well as its

ability to perceive this influence afterwards. They proposed that empowerment was also

linked to the concepts of autonomy and relatedness in CET. Their study was motivated

by the challenge of evoking specific player experiences in levels created via PCG. The

27

authors aimed to automatically predict player experience using computational models

of intrinsic motivation, without including a human in the loop. Levels of an infinite

runner game RoboRunner were procedurally generated and their predicted experiences

were computed using a simulation-based approach. Then several human participants

were asked to play these levels, think aloud during gameplay and answer questions

afterwards. Their commentary and responses were analysed and used to identify the

following themes which are also found in existing PEM theories: challenge, involvement,

learning, emotion, attention and engagement.

Outside of collaboration between academia and industry, the qualitative concepts mentioned

in this section have been used by video game companies in their guidelines for level

design. For example Ubisoft states that designers build fun experiences by perfecting

the following three pillars [4]:

� Guidance — teaching how the game plays and ensuring the player understands

their objectives.

� Challenge — constantly testing the player’s skills.

� Immersion — drawing the player into the game.

Designers may adapt these concepts in a way which aligns most with the genre of the

game on which they are working — in the case of race tracks, the designer may focus on

ensuring new players experience speed, momentum and drama [39].

2.1.2 Quantitative Approaches

The first attempt at a quantitative study of fun was the work of Iida et al. [22] concerning

entertainment metrics of boardgames. They proposed the following estimate of measure

of entertainment E for a given game G:

E(G) =
D

b
, (2.1)

where D is the length of the game and b is the average number of plausible moves for the

player. This estimate assumes that a player would make their decision with probability
1
b at each position. They also assume that there is a direct relation between b and the

player’s strength s:

b = B
1
s , (2.2)

28

where B is the average number of possible moves. An omniscient player would select

the most optimal moves at any position, whereas a novice would usually be unable to

distinguish between good and bad moves i.e. all possible moves are plausible moves.

Therefore equation (2.1) can be re-written as

E(G) = DB−
1
s . (2.3)

This formula was used to investigate the evolution of chess variants. However since

no grandmaster games for old chess variants were available, self-play experiments were

introduced. Each game was played between two identical copies of a computer program.

For each experiment, 1000–2000 games were played to gather data on B and average D.

It was concluded that the evolutionary change of rules in chess variants took at least

two paths — increase in search-space complexity and increase in entertaining impact.

Modern chess is the result of natural selection while being well-balanced in both of these

cases [22].

Iida’s measure is disadvantageous in that it uses concepts which have no equivalent

in modern computer games. Lankveld et al. introduced the concept of incongruity

from psychological literature as a measure of entertainment value in computer games

[27]. Incongruity is defined as the difference between game complexity (difficulty of the

game environment) and mental complexity (a reflection of the player’s understanding

of the game environment). Lankveld et al. assumed that interest is maximised when

a game is well-balanced — by adapting the game complexity to the mental complexity

of the player so that incongruity is constant, the player should continually experience

interest. This was inspired by the concept of flow [11] mentioned in Section 2.1.1. They

developed a side-scrolling arcade game in which enemies can deal damage to the player,

but defeating these enemies will allow the player to gain health. During gameplay the

amount of damage dealt to the player by each enemy was measured — this was taken to

be a measure of the complexity of each enemy. The environmental complexity was defined

as the total of these individual complexities. The mental complexity was measured by

keeping a score of the player’s progress and their sustained damage. Incongruity was

said to be at a balanced level if the player maintains no more than just enough health

to be able to complete the game. Lankveld et al. assumed that with this balanced

setting, the player is encouraged to learn and increase their mental complexity to meet

the demands of the game’s complexity. However no experiments were performed to

validate the study’s hypotheses [27].

29

Yannakakis and Hallam [68, 69, 72] carried out studies in which they measured the

entertainment of predator-prey games e.g. Pac-Man. They based their studies on the

hypothesis that entertainment is mainly dependent on player-opponent interaction, rather

than audiovisual features and game narrative or genre. Their main goal was to derive a

quantifiable metric for entertainment by first quantifying the criteria that define interest

in any predator-prey game, before combining these into a single formula. The criteria

are:

1. An appropriate level of challenge i.e. when the game is neither too easy nor too

hard.

2. Behaviour diversity i.e. when the NPCs are able to hunt and kill the player in

different ways.

3. Spatial diversity i.e. when predators move constantly all over the game world and

cover it uniformly. This gives the player the impression of an intelligent opponent.

To quantify these criteria, Yannakakis and Hallam let the examined group of opponents

(the Ghosts in the case of Pac-Man) play the game N times. Each game was played for a

sufficiently large evaluation period of tmax simulation steps. They recorded the number

of steps tk taken to kill the player, as well as the total number of opponents’ visits vik

at each cell i of the game field grid for each game k. For continuous game motion, the

grid was created by discretising the game field up to the character’s size. The metric for

the first criterion is as follows:

T =

(
1− E{tk}

max{tk}

)p1
, (2.4)

where E{tk} is the average number of simulation steps taken to kill the player over the N

games; max{tk} is the maximum tk over the N games and p1 is a weighting parameter.

p1 is selected to be less than 1 in order to give a boost to T when there is even a slight

difference between E{tk} and max{tk}.
The quantification of the second criterion is given by S, which promotes predators that

produce high diversity in the time taken to kill the player:

S =

(
σ

σmax

)p2
, (2.5)

30

where

σmax =
1

2

√
N

N − 1
(tmax − tmin);

σ is the standard deviation of tk over the N games; tmin is the minimum number of

steps required to kill the player and p2 is a weighting parameter which is set so that σ

has a linear effect on S.

The third criterion is quantified through the entropy Hn of the predator’s cell visits in

a game n - this quantifies the completeness and uniformity with which the opponents

cover the environment. Therefore for each game, the entropy is calculated and rescaled

by the following:

Hn =

[
− 1

log Vn

∑
i

vin
Vn

log

(
vin
Vn

)]p3
, (2.6)

where Vn =
∑

i vin is the total number of visits of all visited cells and p3 is a weighting

parameter which is set greater than 1 to promote high Hn values.

These three metrics can be combined to form one metric I which is the interest value of

a predator/prey game:

I =
γT + δS + εE{Hn}

γ + δ + ε
, (2.7)

where E{Hn} is the average value of Hn over the N games and γ, δ and ε are criterion

weight parameters [68, 69, 72]. These parameters are manually selected based on the

specific game, and adjusted so that I increases as the opponent behaviour changes from

random to near-optimal.

Experiments were performed in order to optimise entertainment in predator/prey games.

The Ghosts in a Pac-Man game were trained to learn and adapt to new playing strategies.

This involved the use of a neuro-evolution offline learning mechanism to produce emergent

behaviour in the Ghosts as they played against three different Pac-Man types. These

Pac-Man players were computer-controlled and the player types/strategies were:

� Cost-based (CB) — the Pac-Man moves along a cost minimisation path but only

in the local neighbour cell area.

� Rule-based (RB) — this is the same as CB but with an additional rule to improve

pellet-eating behaviour.

� Advanced (ADV) — this generates a more global Ghost-avoidance behaviour built

upon the RB Pac-Man’s pellet-eating strategy.

The generated Ghost behaviours from these simulations were:

31

� Blocking (B) — these Ghosts tend to wait for Pac-Man to enter a specific area

that is easy for them to block and then kill.

� Aggressive (A) — this kind of behaviour involves following Pac-Man all over the

stage in order to kill it.

� Hybrid (H) — these Ghosts are referred to as such because they tend to behave

as a hybrid between B and A.

An online learning procedure was then applied in order to evolve the interest of these

games, the results of which can be found in Figure 2.1. The results show that the

learning mechanisms were able to produce games of higher interest than their original

versions, as well as maintaining this high level of interest for a long period of time.

(a) Blocking. (b) Aggressive.

(c) Hybrid.

Figure 2.1: Game interest according to equation (2.7) over the number of online learning
games for each of the ghost behaviours. Taken from [72].

32

In order to verify whether the interest value derived in equation (2.7) is consistent

with actual interest derived from human judgement, a survey was conducted in which

human subjects were used as Pac-Man players. Five opponents whose interest values

varied uniformly across the [0, 1] space were selected and each subject played sets of

games (five game per set) against three of these selected opponents. Each time a pair

of sets was completed, the player was asked which of the two sets was more interesting.

This approach, known as 2-alternative forced choice (2-AFC), is advantageous because

it minimises assumptions about people’s different notions of entertainment [74, 71].

Measuring the agreement between equation (2.7) and the human judgement of interest

involved calculating the Kendall rank correlation coefficients [72]

c(~z) =
N∑
i=1

zi
N
, (2.8)

where N is the number of incidents to correlate and

~z =

1, if subject agrees with (2.7);

−1, if subject disagrees with (2.7).

The binomial distribution was used for obtaining the correlation coefficient probabilities

(also known as p-values P (C ≥ c)). For reference, the observed effect is “highly

significant” if P (C ≥ c) < 1%; “significant” if 1% < P (C ≥ c) ≤ 5%. The total

agreement coefficient (c = 0.3888) and its p-value (P (C ≥ c) = 1.31 × 10−7) showed

that a human player’s notion of interest correlates strongly with that of equation (2.7).

However there were some mismatches which indicated that the behaviour of a human

player is different to that of a computer-controlled player. Also it was demonstrated

that subjects which disagreed with equation (2.7) judge interest by their score or other

personal criteria such as game control and graphics [72].

A similar series of experiments [44, 45, 46] to the one discussed above were carried

out on a platformer, in order to build a quantitative model of player experience for this

genre of games. The test-bed platformer was Infinite Mario Bros, a version of the classic

Super Mario Bros with the additional feature of automatically generated random levels.

The purpose of building this model was to form the basis of experience-driven PCG in

platformers.

The work of Yannakakis et al. [68, 69, 72, 74, 71] is the quantification of Malone’s

33

concepts [36] discussed in Section 2.1.1. Specifically their work on the Playware Playground

[74, 71] was an attempt to introduce quantitative measures for the challenge and curiosity

entertainment factors. This consisted of a set of 6×6 tiles on which twenty eight children

were asked to play a Bug-Smasher game (see Figure 2.2) — the goal is to step on as

many lighted tiles as possible. In order to increase the fantasy factor, different sounds

and colours represented different bugs on appearance and smashing. Each subject played

two out of eight selected game states in all permutations of pairs, each game differing

in one or more of the levels of entertainment factors, before being asked which of the

two was more interesting (the 2-AFC approach). The answers to these questions were

used to guide the training of an artificial neural network (ANN) model of entertainment.

The solutions emerging from this approach successfully mapped correlations between

entertainment, challenge and curiosity, and these correlations appeared to follow the

principles of Malone’s qualitative studies. Also regarding player response time, the

results showed that fast responding children show a preference for low challenge and

low curiosity games; slow responding children preferred games of high challenge and low

curiosity [75].

Figure 2.2: A child playing the bug-smasher game, taken from [73].

Another study was carried out involving the Playware game platform, however this time

the subject’s heart rate (HR) was recorded as well as their judgement of entertainment.

This was motivated by lack of research into the effect of entertainment on a player’s

34

physiological state [71, 73]. The HR data was gathered via a wireless Electrocardiogram

(ECG) device placed on the child’s chest. In order to identify the features of the

HR dynamics that correlate with entertainment, several statistical parameters were

computed, including average HR, HR signal variance, maximum and minimum HR and

the difference between them. Also three different regression models (linear, quadratic

and exponential) were used to fit the HR signal. The obtained results indicated that

average HR was the only feature strongly correlated with player satisfaction [73]. This

study is an example of a model-free approach to PEM, where the type of data gathered

is objective (see Section 1.1).

Physiological approaches to modelling a user’s emotional state and experience were

carried out by Mandryk et al. in [37] and [38], respectively. In [37], several participants

were asked to play a sports game (NHL 2003) under three conditions: against a computer,

co-located friend and co-located stranger. The following physiological signals were

measured:

� Galvanic Skin Response (GSR) — this is a measure of the conductance 1 of the

skin; it is affected by specific sweat glands located in the palms of the hands and

soles of the feet, which respond to psychological stimulation. This was measured

using surface electrodes sewn in Velcro straps placed around two fingers on the

same hand.

� Cardiovascular activity — HR, interbeat interval, HR variability, blood pressure

(BP) and BP variability were all measured using an ECG. Three pre-gelled surface

electrodes were placed on the subject’s body — two on the chest and one on the

abdomen.

� Electromyography (EMG) — this measures muscle activity by detecting surface

voltages that occur during muscle contraction. EMG from smiling (EMGsmiling)

and frowning (EMGfrowning) activity were collected via surface electrodes placed

on the specific muscles associated with these activities.

These signals were normalised and used as inputs for a fuzzy logic model which was used

to transform them into arousal-valence (AV) space. A second fuzzy model was then used

to convert AV into five emotions: fun, challenge, boredom, frustration and excitement.

The results indicated that high HR and GSR leads to high levels of AV, which in turn

correspond to fun and excitement [37].

1Usually measured in microsiemens (µS).

35

In order to investigate whether physiological measures can be used to objectively measure

a player’s experience with entertainment technology, a similar set of experiments was

carried out in which respiration rate of the participants was measured in addition to

the four signals mentioned earlier [38]. In the first experiment, subjects played a

sports game in four conditions of difficulty: beginner, easy, medium and difficult. In

the second, the conditions were against a co-located player and against a computer.

As well as physiological data, subjective data was also collected in the form of pre

and post-experiment questionnaires — after playing each condition, participants were

asked to rate the experience on a five-point scale in terms of the five emotional states

mentioned in the previous study. In experiment 1, it was reported that subjects who lost

to the computer rated the condition as significantly more boring than those who beat it.

Regarding experiment 2, all subjects reported that they found playing against a friend

more enjoyable than playing against a computer — this was clearly reflected in the GSR

responses (Figure 2.3). Because of this, it was hypothesised that a correlation may exist

between GSR and one of the emotional states. Using Pearson’s correlation coefficient r,

it was found that normalised GSR was correlated with normalised fun, with a coefficient

value of r = 0.7 and a p-value of p = 0.026 (Figure 2.4).

(a) Participant 2 scoring a goal. (b) Participant 9 engaging in a hockey fight.

Figure 2.3: GSR responses against time for specific game events for certain participants.
Taken from [37].

36

Figure 2.4: Graph showing the correlation between normalised GSR and normalised fun.
Taken from [38]. Note: the participants have been ordered according to normalised fun,
however the lines drawn between the points carry no meaning.

When one considers the use of human participants, neural networks and the aim of

building a model which produces a quantity representing the entertainment value of a

game; the quantitative studies involving Pac-Man and the Playware Playground have the

largest overlap with our work than any of the other existing PEM literature. However one

major difference is their derivation of formulae with the inclusion of arbitrary parameters

— while we carry this out for predicting playthrough feedback, this is not the method

we employ for quantifying the enjoyment value for game levels. Instead we map features

from the players’ gameplay to a quantity.

37

2.2 Evaluating Levels — the Sentient Sketchbook

Figure 2.5: User interface of Sentient Sketchbook. The user draws a sketch on the left,
the suggestions are on the right, and the evaluations are in the middle. Taken from [31].

The Sentient Sketchbook [33] is a tool which gives feedback in the form of metrics and

suggested improvements, in order to assist designers in the creation of game levels. This

is achieved via a computer-aided sketching interface, shown in Figure 2.5. The motivation

for its creation was the fact that the various models discussed in section 2.1.2 cannot

be applied to content outside their domain. Reaching a domain-independent framework

requires devising more general functions that abstract away from game-specific features

towards more high-level concepts, while retaining their applicability to a particular game.

This involved the use of game design patterns [7]. Originally introduced in 2004, they

describe part of the interaction possible in a game. The patterns which translate well to

level design are:

� Control — giving access to otherwise unavailable actions and making the use of

tactics and actions easier. It encompasses both area control and resource control.

� Exploration — the goal of learning the layout of the world.

� Symmetry — ensuring players have equal opportunities and instantiating team

balance.

38

(a) Map sketch. (b) Level (2D).

(c) Level (3D).

Figure 2.6: Map sketch with the corresponding RTS level. White tiles represent bases,
cyan tiles are resources and dark tiles are impassable. Taken from [34].

(a) Map sketch. (b) Level (2D).

Figure 2.7: Map sketch with the corresponding roguelike dungeon level. White tiles
represent entrances/exits, cyan tiles are enemies and dark tiles are impassable. Taken
from [47].

Quantifiable metrics [32] based on these patterns were used to evaluate abstractions of

the game levels known as map sketches (see Figures 2.6 and 2.7). A map sketch consists

of a grid layout with empty tiles (allow movement), impassable tiles (block movement)

39

and special domain-dependent tiles (e.g. bases, spawn-points and traps). Area control

and exploration require a set of two or more reference tiles (SN) — these have a special

purpose in-game e.g. player bases in RTS games. For control measures, a group of tiles

can be “owned” by a reference tile if that reference tile is closer to those tiles than the

other reference tiles. This is reflected in the safety of a tile t to a reference tile i, which

is given by:

st,i(SN) = min
1≤j≤N
j 6=i

{
max

{
0,
dt,j − dt,i
dt,j + dt,i

}}
, (2.9)

where dt,i is the distance from tile t to element i. st,i > 0 for the closest reference tile i,

while st,i = 0 for the remaining i (see Figure 2.8(a) for an illustration of safety).

The exploration required from reference tile i to all other reference tiles is:

Ei(SN) =
1

N − 1

N∑
j=1

j 6=i

Ei→j
P

, (2.10)

where Ei→j is the map coverage when a four-direction flood fill algorithm is applied

starting from i and stopping once j has been found (see Figure 2.8). P is the number

of passable tiles in the map. Ei is high when a large part of the map must be covered

in order to discover one reference tile when starting from another reference tile. For

resource control, a definition of the tiles representing strategic resources is required

— these are known as target tiles (SM). Finally to ensure that reference tiles are

symmetric in terms of control and exploration, evaluations of balance are introduced.

This gives rise to a total of six objective functions used to evaluate levels in the Sentient

Sketchbook: strategic resource control (fs), area control (fa), exploration (fe), strategic

resource control balance (bs), area control balance (ba) and exploration balance (be);

40

their mathematical formulations are:

fs(SN , SM) =
1

M

M∑
k=1

max
1≤i≤N

{sk,i}

fa(SN) =
1

P

N∑
i=1

Ai

fe(SN) =
1

N

N∑
i=1

Ei

bs(SN , SM) = 1− 1

MN(N − 1)

M∑
k=1

N∑
i=1

N∑
j=1
j 6=i

|sk,i − sk,j |

ba(SN) = 1− 1

N(N − 1)

N∑
i=1

∑
j=1
j 6=i

|Ai −Aj |
max{Ai, Aj}

be(SN) = 1− 1

N(N − 1)

N∑
i=1

∑
j=1
j 6=i

|Ei − Ej |
max{Ei, Ej}

,

(2.11)

where Ai is the map coverage of safe tiles for element i (see Figure 2.8(b)).

Map sketches are optimised towards the above measures of quality via artificial evolution,

and are encoded in a way which reduces representational biases and does not hinder

optimisation [32].

The evaluation method of Sentient Sketchbook was demonstrated on a multiplayer RTS

and a singleplayer roguelike dungeon game. Table 2.2 shows what some of the evaluation

metrics correspond to in each of these genres.

When suggesting alternative map sketches, there is a minimal criteria for playability —

all special tiles must be connected to each other via a passable path. This was secured

through a Feasible-Infeasible two-population genetic algorithm (GA).

41

(a) Map sketch. (b) Map coverage A1 and A2.

(c) Exploration E1→2. (d) Exploration E2→1.

Figure 2.8: Sample metrics for a map sketch (a) with SM (stars), SN (triangles) and
impassable tiles (black). The purple star is closer to the blue triangle than the red
triangle, therefore it has a high safety value. The other stars are either equally close to
(green star) or equally far away from (brown star) both triangles, therefore they have
low safety values. For map coverage of safe tiles from the red and blue triangles (b),
A1 is shown in red and A2 in blue. For map coverage during exploration (c and d), the
exploration from the red triangle to the blue triangle E1→2 is shown in red, while that
from the blue to the red E2→1 is shown in blue. Taken from [32].

Metric RTS Roguelike Dungeon

Strategic resource control Easy access to resources.
Placement of treasures

close to monsters.

Area control Area control around bases. Distribution of enemies.

Exploration Discovery of enemy bases.
Winding path from

entrance to exit.

Table 2.2: Metrics used in level evaluation for Sentient Sketchbook, along with what
they correspond to in RTS and roguelike dungeon games.

42

As well as quality, diversity is also important when generating suggestions for game

levels. Therefore several search-based approaches [47] were compared in their ability to

produce good and diverse content. Similar to “fun”, the definition of diversity within

the context of level design is also subjective. In [47], three different measures of diversity

for map sketches are used:

� Tile-based diversity — the number of tiles that differ from one map sketch to

another.

� Objective-based diversity — this is measured in terms of the metrics in equation

(2.11).

� Visual impression diversity — measured along metrics related to balance or grouping,

which are used to extract visual features of maps.

Four optimisation algorithms were used in the study, and the domain was limited to

map sketches for RTS games only. All of the algorithms are effective at producing the

desired content, provided that appropriate distance measures are used. More specifically

novelty search is able to create diverse individuals, however their quality is not as high

as those produced from niching evolutionary algorithm 2 (NEA2) [47].

43

2.3 Weakly Supervised Learning

(a) Handwaving. (b) Boxing.

(c) Clapping.

Figure 2.9: Examples of automated annotation of training data using different MIL
algorithms. Taken from [56].

Weakly supervised learning (WSL) [78] is a machine learning task in which all of the

elements in the training data set are “weakly labelled” i.e. when the training labels

provide less information than what the algorithm outputs at runtime. As an example,

consider object detection in images, where the desired output is a bounding box around

the object of interest. A weak supervision approach would involve each training image

being annotated with a label indicating whether the image contains the object of interest

or not. This is different to a fully supervised approach, in which the training images

would already include ground truth bounding boxes. The motivation for WSL is that

manually annotating all of the elements with ground truth labels incurs high cost [78].

This is why it is a potentially valuable technique for evaluating game levels; giving a

single overall rating for a level is less time-consuming than rating individual areas of

44

that level. As another example WSL has also been applied to microscopy images of cells

to better understand the relationships between different drug treatments [8].

There are several types of weak supervision [78]. However in this thesis, only those

involving a multiple instance learning (MIL) problem will be discussed [3]. In MIL each

element in the training set is represented as a bag containing a set of feature vectors,

known as instances. A bag is labelled either positive if it contains at least one positive

instance (one with the desired information), and negative if it contains no such instances.

Therefore, while the label of the bag is known, the individual labels of the instances that

conform the bag are unknown. When carrying out MIL for classification, one can be

thought of as asking the question: “What am I seeing in these positive bags that I am

not seeing in these negative bags?”. Classic MIL uses two types of information to train

a classifier:

� Intra-class — this focuses on the similarities between the positive instances.

� Inter-class — this focuses on the differences between the positive and negative

instances.

Figure 2.10: Test data detection precision recall curve, taken from [56]. AP = Average
Precision. Cross data results as published in [9].

An example of the use of MIL for action detection in videos is the approach taken by Siva

and Xiang [56], where their goal was to train a classifier which could detect and identify

a specific action taking place in a video. In this problem, the MSR2 training data set

consists of a set of positive videos containing at least one action of interest, and negative

videos containing no actions of interest. An action is represented by a spatio-temporal

cuboid/volume in the video, also known as an action cuboid. Each action cuboid

is described by a bag-of-words (BOW) histogram containing 2000 bins derived from

Spatio-Temporal-Interest-Point (STIP) features [28]. 100000 randomly selected STIPS

from the dataset are clustered into 2000 code words via k-means clustering. Since

45

a typical video instance contains approximately 109 action cuboids, MIL would be

intractable. Therefore the number of feasible instances needs to be limited. First an

initial set of instances C ′ is created using a person detector run on every F th frame.

These are then ranked based on STIP density and temporal spread and the first M

cuboids from this ranked list are selected, giving the following sets:

C+
i = {C+

i1, C
+
i2, . . . , C

+
iM}

C−i = {C−i1, C
−
i2, . . . , C

−
iM},

(2.12)

where i = 1, 2, . . . , N± is the number of positive/negative videos. The goal is to select

a set G∗ = {c1, c2, . . . , cN+} containing one instance from each positive video such that

each instance is the action of interest. The following cost function is minimised:

G∗ = argmin
∑
cj∈G

[
D(cj , G−j , kp) + (1−D(cj , C

−
i=1,...,N− , kn))

]
, (2.13)

where G = {c1, c2, . . . , cN+} is a set composed of one instance from each positive bag

and G−j is G excluding cj . D(c,M, k) is the distance from the instance c to the set of

instances M with constant parameter kx (x = p for positive and x = n for negative) [56].

The first term in equation (2.13) aims to minimise intra-class distance and the second

term aims to maximise inter-class distance. Solving equation (2.13) is achieved using a

genetic algorithm — this involves a population of random candidate solutions evolving

through reproduction and random mutation towards an optimal solution G∗. Given G∗
and a set of negative videos, a support vector machine (SVM) is then trained as an action

cuboid classifier. Figure 2.10 features precision recall curves (PRCs) [77] comparing the

detection performance of the weakly supervised detector with that of a fully supervised

detector. On handwaving, it can be seen that using WSL achieves a higher average

precision. However (as stated by the authors) this can be attributed to biases in

the manual annotations — in some videos the ground truth bounding boxes do not

encompass the entire extent of the hand motion (see Figure 2.9a), and therefore do not

include all of the useful STIPs. For boxing and clapping, the weakly supervised detector

achieved similar and worst performance compared to the fully supervised detector,

respectively. However in the latter case the weakly supervised detector was still able

to achieve over 50% of the precision of the fully supervised detector [56]. The authors

suggest that the relatively poor performance of the clapping detection is due to the

clapping class having fewer training samples, as well as the highly symmetric nature of

clapping.

46

The above approach provides the main inspiration for our use of WSL in game levels to

identify the most significant enjoyable moments.

Figure 2.11: Initial instances generated for an image to be used in an MIL algorithm,
taken from [62].

Another method by Siva and Xiang [55], with the goal of object detection in images,

avoids using intra-class information. This technique is referred to as negative mining, as

it uses inter-class information and another piece of information known as saliency. In this

problem, the bags are the images and the instances are randomly generated rectangles

which act as bounding boxes within the images (Figure 2.11). Each rectangle is given

an “objectness” score reflecting the likelihood of it containing an object (not necessarily

the object of interest). This measure of objectness was presented by Alexe et al. [2], and

is based on four types of image cues combined in a Bayesian framework. A set number

of the rectangles (e.g. the top 100) are then selected based on their objectness scores

— these are the initial instances. Each instance is represented by a BOW histogram,

whose bins are derived from the clustering of feature vectors extracted from the images

[12]. Saliency refers to the knowledge about the size and location of the object in the

photo — it is used to prune the space of possible locations a priori [2], and works on

the assumption that the images were taken by a human. Negative mining is a viable

option here due to the fact that the PASCAL VOC 2007 data set was used. In this data

set, a typical class has around 300 positive images I+i and 4700 negative images I−i . 100

candidate instances xi,j=1,2,...100 are generated using a saliency measure, giving 470000

negative instances vs 300 objects located somewhere in 30000 images. This results in an

47

intra-class distance based on less than 300 unlabelled similar positive vs an inter-class

distance based on 470000 strongly labelled negative instances. Clearly one can gain

substantially more information from the latter, hence the sole use of inter-class. The

goal is to select a single instance x+i from each I+i corresponding to the location of the

object — negative mining does this by selecting the instance that maximises the distance

to the nearest neighbour in any image containing only negative instances x−i,j , reflected

in the following cost function [55]:

x+i = argmaxx+i,j
||x+i,j −N(x+i,j)||1, (2.14)

where || . . . ||1 is the L1 norm and N(x+i,j) is the negative nearest neighbour (NNN) of x+i,j ,

which is determined using a kd-tree based approximate nearest neighbour algorithm. If

there is a saliency measure φ which serves as a prior of how likely an instance is to be

positive, this can be added to equation (2.14), giving

x+i = argmaxx+i,j

[
||x+i,j −N(x+i,j)||1 + φ(x+i,j)

]
. (2.15)

Figure 2.12 shows the results of various classifiers — it is clear that the combined negative

mining and saliency method gives the best performance. The fact that this method

relies on the abundance of known negative instances means no intra-class optimisation

is necessary, leading to increased computational efficiency. It was also observed that

using normalised histograms results in greater NNN distance for small instances than

that for large instances; unnormalised histograms lead to a bias towards large instances.

Using root-normalised histograms minimises the bias towards either size [55].

While negative mining proves to be a successful and efficient technique for object detection

in images, it is not used in our WSL implementation due to limitations in the gameplay

data.

Figure 2.12: Results using intra-class, negative mining (N), saliency (φ) and combined
negative mining and saliency methods, taken from [55].

The PASCAL VOC 2007 data set was also used for training in the MIL approach

48

taken by Song et al. [59] for object detection. Their approach differs from that of

Siva and Xiang [55] in that intra-class information is used in addition to inter-class

instead of relying entirely on negative mining and saliency. The initial instances are

selected based on the search technique by Uijlings et al. [66] as opposed to the earlier

mentioned objectness measure [2]. Positive instances are selected using a discriminative

submodular cover algorithm and the MIL objective is optimised using a latent SVM

with Nesterov smoothing [43]. This technique results in a 50% relative improvement in

average precision over Siva and Xiang’s approach. The authors also note that they use

a different evaluation metric to report their results on the test set [59].

The WSL techniques discussed in this section all involved the training of SVMs; in

our approach neural networks are trained instead. Additionally instead of initially

selecting random instances of varying sizes, the sizes of our instances are equal across all

playthroughs. Therefore biases towards instances of a particular size are not a concern.

49

Chapter 3

Experimental Design

The fundamental thing required for any machine learning task is training data. In this

chapter we will discuss the game whose data was harvested for our approach, as well

as the types of data which were gathered. This includes the data for both training the

system and assessing its performance.

3.1 The Game

3.1.1 Requirements

The game needs to fulfil certain criteria, mainly it must have appropriate analytics.

The goal of this research is to assist level designers, therefore the analytics must contain

information about the player’s interaction with their surroundings. Also these surroundings

must be relevant to the gameplay. Therefore we require a game for which it is possible

to gather behavioural data i.e. the actions of players, as well as regular updates of

their locations within the level. Also because our system is intended to predict player

enjoyment, we need a game containing features that allow players to signal their enjoyment

(or lack thereof). Ubisoft gathers and stores analytics about most of its games. Using

this pre-existing telemetry data is ideal as this project requires a large data set. While the

types of available data would be confined within the scope of what is tracked by Ubisoft,

creating/modifying a game and releasing it to players purely for the purposes of data

collection is very time-consuming. Additionally while other forms of data e.g. physiology

may be useful, this requires organising controlled play sessions which participants may

find invasive — this has the potential of introducing biases into the data.

Several Ubisoft titles were considered and investigated for their suitability. The collaborative

culture that exists across Ubisoft studios means that we do not have to limit ourselves

50

to games developed solely by Ubisoft Reflections. Accessing the data for a specific

game requires permission from the main studio/team involved in its development — this

presents a major obstacle, given the fact that some teams are unwilling to share their

data with a project involving an external entity e.g. a university. This was the case

with some games in the Tom Clancy’s series, which were attractive options due to their

player feedback features. Other teams, while willing to share their data, did not possess

the appropriate analytics. This was the case with games such as Trials, Trackmania

and Starlink, in which player positions are not tracked. These factors culminated in the

selection of For Honor as the game to use for the project, since we successfully gained

access to its telemetry data, which contained the required analytics. Additionally we

were provided with tracking tags which allowed us to interpret the database with less

difficulty.

3.1.2 Description

Figure 3.1: Screenshot of the game For Honor. Image approved for public use by Ubisoft.

For Honor is a medieval action game developed and released by Ubisoft Montreal in 2017

(Figure 3.1), it features both a singleplayer campaign and several multiplayer modes.

Players fight against their opponents using class-specific melee weapons. Performing

certain actions such as killing multiple enemies consecutively allows a player to gain

Feats — additional perks which grant the player certain abilities. A maximum of four

51

Feats can be equipped at a time.

One of For Honor’s multiplayer modes is called Dominion [14]. This consists of a

four-versus-four match in which players must capture and hold multiple positions in

a battlefield. There are three of these points, A, B and C (see Figure 3.5). Points

are earned through occupying the zones and killing the significantly weaker AI enemy

minions that fight at point B. Players earn double points for staying on points A and

C. When one team reaches 1000 points, the other team starts to “break” — respawning

is disabled for that team except through revival by other teammates. Once all of the

breaking team’s members are killed, the opposing team wins. The breaking team can

make a comeback if they reduce the other team’s score below 1000 by taking zones, thus

regaining the ability to respawn and preventing a loss 1. At the end of the game, players

have the option of giving feedback in the form of a rating out of five stars.

3.2 Data Collection

There are two kinds of data which are used for the project: playthroughs and user

feedback. The former is used to train the system while the latter is used as ground truth

to evaluate the system’s performance. The project is a Weakly Supervised Learning

(WSL) problem in and of itself. This is because the playthroughs do not contain player

feedback for individual regions of the levels (the intended output of the system), but have

ratings for the overall match instead. We then compare the system’s output to that of

users, in a similar manner to how WSL-trained object detectors have their outputted

bounding boxes compared to ground truth boxes (Section 2.3).

1The following link contains gameplay footage of a typical Dominion match: https://www.
youtube.com/watch?v=sp3NKQlJPuo

52

https://www.youtube.com/watch?v=sp3NKQlJPuo
https://www.youtube.com/watch?v=sp3NKQlJPuo

3.2.1 Playthroughs

Map Playthrough count

Citadel Gate 424

Overwatch 180

Sanctuary Bridge 189

River Fort 67

High Fort 78

The Shard 156

Total 1094

Table 3.1: No. of playthroughs associated with each For Honor map.

The collected data consists of aggregated information on the in-game activity of players

in Dominion matches from Febuary to April 2017, played across 6 different maps (see

Table 3.1 and Figure 3.5). The choice of only using Dominion matches is due to the

fact that it consists of 1 round per match and at its core, is about control of the map.

Therefore geometry plays a more significant role in this game mode than in others.

Modes such as Duel consist of multiple rounds confined to a relatively small area where

the geometry of the map would have no clear influence on the feedback. Also the presence

of multiple rounds introduces an additional layer of complexity, since there is only one

opportunity to give feedback — it would be non-trivial to determine how each round

influences the final rating. Each playthrough is considered to be a single data point —

a playthrough consists of the in-game activity of one player during one match. In total,

over 1000 playthroughs (Table 3.1) were collected for training; the information contained

within them can be divided into three categories:

1. Positions — the player’s (x, y, z) coordinates are recorded every 3 seconds. The

orientation of the player at each position is estimated by computing the direction

vector between two consecutive positions (see Figure 3.2). However this estimation

does not account for motions such as reversing or strafing. The player’s bounty level

(number of equipped Feats they have unlocked) at each position is also recorded.

2. Actions — these include kills, deaths, attacks, defends, dodges, point changes and

special kills. Some of these actions themselves consist of different types e.g. death

by hit, falling, fire e.t.c. The attack and defend events also output player health —

53

this is used to calculate the net change in the player’s health over specific periods

of time.

3. Feedback — a rating out of five stars given by the player at the end of a match.

Map geometry is essential information to acquire for training. Each map is represented

by a polygon mesh, which is used in combination with the positional data to infer the

local geometry surrounding the player throughout the match. This is achieved using

ray-casting with BSP trees [24]. A UV sphere is created for each position coordinate,

with rays projecting outward from the surface normals of the polygon defining the sphere.

Then the intersection between these rays and the mesh’s polygons are computed. Figures

3.2 and 3.3 help to illustrate the information gathered as the player moves along a path.

Figure 3.2: Top-down illustration of a typical player path (black line) through a level,
their estimated orientation at each position (green arrow) and ray-casting from one of
the positions (red arrowed lines).

54

Figure 3.3: A UV sphere (yellow) at one of the player positions in a playthrough, with its
corresponding map. Every smaller red sphere represents a point where a ray is emitted.

55

Figure 3.4: Example of a coloured map produced by a user for use as ground truth to
evaluate the performance of our feedback tool. Areas highlighted in green (red) are those
the user deemed to be good (bad), while areas left uncoloured are considered neutral.

3.2.2 User Feedback

In order to establish the performance of the system, its outputs must be compared to

a ground truth. Since the feedback is visualised by highlighting areas of the map, the

ground truth would ideally be in a similar form i.e. maps which have been manually

highlighted by humans. A study was carried out in which participants were asked to

play Dominion matches on the For Honor maps used in the project, before highlighting

the areas of the map they did/did not enjoy. The instructions given to each user can

be found in Appendix A. The original intention was to utilise Ubisoft Reflection’s User

Research Lab to hold play sessions in which participants could play the game and colour

the maps afterwards. However the COVID-19 pandemic had begun during the planning

phase of the study, resulting in the closure of the lab. Therefore we reached out to all

employees of Ubisoft Reflections and Ubisoft Leamington, who could access the game

56

for free through their Uplay accounts, and play it within their own homes. Those who

expressed interest in participating were given the instructions and told to play in their

own time. It is important to note that this introduces a self-selection bias, the effect

of which can be seen in the fact that the majority of individuals were familiar with For

Honor and had played the game prior to participating in the study. After playing several

matches on a particular map, the user would employ a graphical interface to highlight

the areas of the map they deemed to be good, bad or neutral. An example of this is

featured in Figure 3.4. Players were also asked to provide qualitative feedback on why

they coloured the map the way they did. The weaknesses of this approach are discussed

later in Section 6.1. The diversity of the participants is reflected in the feedback they

gave — there were mixed opinions for several regions across the maps. For most areas

the majority of users had similar feedback, with only one or two disagreeing. However

for certain areas the feedback was almost unanimous. For further detail, Appendix B

features the full set of coloured maps, along with consolidated qualitative feedback.

Note: for the rest of this report, the term “players” will be used to refer to the general

audiences of computer games, as well as the people whose gameplay data was gathered

in the form of playthroughs. The term “users” will refer to the participants in the study.

57

(a) Citadel Gate. (b) Overwatch.

(c) Sanctuary Bridge. (d) River Fort.

(e) High Fort. (f) The Shard.

Figure 3.5: Overview of the For Honor maps used in the project, with Dominion spawn
locations (orange and blue) and capture points (black), taken from [23].

58

Chapter 4

Methodology

1 2 3 4 5
User rating

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f t
ot

al
 se

ss
io

ns

Wins
Losses

Figure 4.1: Graph showing percentage of playthroughs for each rating which resulted in
a win/loss.

Our goal is similar to that of Liapis et al. [32, 33] in their development of the Sentient

Sketchbook — to assist the level designer by automatically evaluating the content

they have created. However unlike the Sentient Sketchbook which evaluates levels

according to specific patterns such as symmetry and area control, the tool we aim

to build focuses purely on enjoyment as judged by the player. In order for a system

59

to “know” what features of the level will provide the most (or least) enjoyment to

prospective players, it must first be able to derive a mapping between gameplay features

and feedback i.e. carry out gameplay-based Player Experience Modelling (PEM) using

existing gameplay and feedback data for training. Most of the previous studies on PEM

involved the formation of a hypothesis about the root of player enjoyment, followed by

an experiment to demonstrate support for this hypothesis. For this project we have

made as few assumptions as possible about the sources of player enjoyment, instead

relying on machine learning and data mining algorithms to search for patterns in raw

gameplay data and analysing their outputs i.e. a model-free approach. The authors of

Sentient Sketchbook acknowledge that while map sketches can be applied to genres other

than those for which they have performed experiments, the objective functions would

need to be adapted and may be less straightforward to optimize [47]. These hard-coded

rules may make it non-trivial for a designer who has a specific game in mind — machine

learning has the advantage here as it can adapt to specific scenarios and players.

One may be inclined to assume that the player’s feedback is most strongly dependent on

whether their team won or lost the match. To test this, the correlation between a team’s

win/loss and the given rating was computed using Pearson, Spearman and Kendall

correlation (Table 4.1). The results of each playthrough (win/loss) were also plotted

against the given rating in a bar graph which can be found in Figure 4.1. The calculated

coefficients, as well as an observation of the bar graph, indicate a low correlation between

these features. This suggests that other factors must be involved in determining the

player’s judgement of a match.

In this chapter the methods by which we achieve our goal of level evaluation are described.

As mentioned earlier, creating a mapping between gameplay features and feedback is left

to machine learning algorithms. Therefore the features must first be represented in a way

which makes it easier for these algorithms to interpret them (Section 4.1). In our case

we represent the playthroughs as a series of “moments”. The next step is to select those

moments which have the strongest influence on player feedback. We call this moment

detection and employ two different methods to carry it out — weakly supervised learning

(Section 4.2) and a probabilistic regression ensemble (Section 4.3). The selected moments

and feedback are then used to train a neural network which can predict feedback, given

a set of level features. Finally these predictions are visualised as heat maps (Section

4.4) which are compared to user-generated maps in order to assess the accuracy of our

system (Section 4.5).

60

Correlation Value

Pearson 0.16

Spearman 0.16

Kendall 0.15

Table 4.1: Results of computing the correlation between player win/loss and the rating
given at the end of the match.

4.1 Feature Representation

Figure 4.2: Illustration of how a playthrough is divided into chunks with a 50% overlap.

The large amount of data per playthrough leads to a common problem to which game

data is subjected: the curse of dimensionality. Coined by Richard E. Bellman [6], it

refers to the increasing difficulty of finding valid correlations within data as the number

of dimensions increases. However this problem can be alleviated via the use of feature

engineering and dimensionality reduction techniques. For example when interpreting the

motion of a player, their long term motion appears to strongly depend on their location

in the map. However by focusing on short sequences of their motion, this becomes less

important and can be disregarded, thereby reducing the dimensionality. This need for

a more compact representation of data is the same motivation for Siva and Xiang’s

use of STIP features [56]. They divided their videos into action cuboids described by

bag-of-words histograms, derived from clustering STIP features. Similarly, we divide our

playthroughs into sequences described by histograms, derived from clustering features.

The technique used in this thesis for dimensionality reduction is principal component

61

analysis (PCA) [20]. This allows one to transform data to a lower-dimensional space

while keeping most of the original information. The sequences into which we divide the

playthroughs contain information about the player’s motion, their bounty level (no. of

equipped feats), their actions and the geometry which surrounds them. Dimensionality

reduction is carried out in a two-fold PCA process: in the first step, events which are

tracked regularly are considered (motion, bounties and geometry); in the second step,

events which are tracked at their moment of occurrence are considered (actions such as

kills, deaths, dodges e.t.c.). Also the time period over which events are considered in the

2nd step is longer than that of the first step. The reason for carrying out a 2-fold process

is in order to obtain statistical strength. In terms of player motion, this refers to the fact

that when we look at the overall player path in a playthrough, most of these paths are

dissimilar to each other. However when we divide a path into shorter motion sequences,

we begin to see more of these motions occurring across multiple playthroughs. Clustering

the spatial information from the first step and feeding this into the second step means

the system does not have to learn those features independently, making it easier for the

algorithm to discard irrelevant information. This method also adds non-linearity to the

model.

4.1.1 Player Motion

Consider a single playthrough Px containing all of the player’s positions which have

been tracked every 3 seconds:

Px = [x0, x1, x2, x3, x4 . . .xn], (4.1)

where xi = (xi, yi, zi) is the ith tracked position of the player during the match and

n is the total number of positions in the playthrough. As mentioned in the previous

chapter, these are used to estimate the orientation φi = (φxi, φyi, φzi) of the player at

each of these points in time:

Pφ = [φ0, φ1, φ2, φ3, φ4 . . . φn], (4.2)

where

φi =


1

|xi+1 − xi|
(xi+1 − xi) for i 6= n,

φn−1 for i = n.

62

Since each position event also contains the player’s bounty level 0 ≤ bi ≤ 4, the

playthrough in terms of the players bounties at each point in time can be expressed

as

Pb = [b0, b1, b2, b3, b4 . . . bn]. (4.3)

4.1.2 Local Geometry

For the geometry surrounding the player, the results of the ray-casting per position i are

encoded in a vector Gi of size R where R is the number of rays projected outward from

the (x, y, z) coordinate. Therefore the playthrough in terms of the local geometry is

PG = [G0, G1, G2, G3, G4 . . .Gn], (4.4)

where the values of the elements of Gi (here denoted as gr where r is the ray index)

are dependent on the manner in which the geometry was captured. Several different

methods were considered:

1. Map proximity — This is based on the idea of lower distances being more important

since the game mainly involves close combat. Each ray is projected outward, and

at 3 separate distances (Figure 4.3a), the intersection is computed in the following

way:

gr =

0 if intersection with the map,

d if no intersection with the map,

where d is the shortest distance between the ray target and the map’s object mesh.

2. Nested spheres — In order to better capture the surrounding geometry and compensate

for the reduction of ray density with distance, three spheres of increasing radii are

used, with the outermost sphere possessing the highest resolution for its polygon

(Figure 4.3b). For each ray, its intersection with the map’s structure at a fixed

distance is computed:

gr =

1 if intersection with the map,

0 if no intersection with the map.

3. Intersection distance — Each ray is projected out to a distance dlim = 200 from

the sphere, and the distance the ray travels before it intersects the map dint is

63

computed:

gr =

dint if intersection with the map,

dlim if no intersection with the map.

4. Log-distance — This may provide a better representation of For Honor player

behaviour as players are more likely to place importance on events the closer they

are to them, especially considering that there is no ranged combat in For Honor.

It is equivalent to the intersection distance method but computing the logarithm

of the distance instead:

gr =

log(dint) if intersection with the map,

log(dlim) if no intersection with the map.

(a) Map Proximity. (b) Nested Spheres.

Figure 4.3: Illustration of two ray casting methods to capture the geometry surrounding
the player.

The total number of positions across all playthroughs for the Riverfort map is ∼ 104.

Due to the run-time costs incurred by computing the geometry vector for every single

player position, an approximation of the geometry around the player is used instead.

First the positions for a given map are clustered via k-means and the geometry vector

around each cluster centre is calculated. Then these geometry vectors are cached for later

use. When the geometry surrounding a given position is required, the nearest cluster to

that position is computed and its corresponding geometry vector is used. The number

64

of clusters Nmc to use for each map is determined by starting with a standard number of

Nmc = 1000 for River Fort, before extrapolating this to the other maps via calculation of

their surface areas. This ensures that the number of clusters is proportional to the size of

each map. The initial value of 1000 is the result of a compromise between computation

time and the distance between a cluster centre and the player’s actual position.

4.1.3 Zero-meaning & Clustering

Considering the playthrough in terms of all of its features which have been discussed

so far, a window of variable size w is used to divide the playthrough into chunks

corresponding to a specific period of time. The following illustrates the first chunk

for a window of size w = 4 (corresponding to a period of 12 seconds, considering the

sampling rate of position events):

[x0, x1, x2, x3, x4, x5, x6, x7 . . .xn]

[φ0, φ1, φ2, φ3, φ4, φ5, φ6, φ7 . . . φn]

[b0, b1, b2, b3, b4, b5, b6, b7 . . . bn]

[G0, G1, G2, G3︸ ︷︷ ︸
C1,1

, G4, G5, G6, G7 . . .Gn]

(4.5)

C1,1 = [x0, x1, x2, x3, φ0, φ1, φ2, φ3, b0, b1, b2, b3, G0, G1, G2, G3],

where Cj,k is the kth chunk of the jth playthrough. Since only the player’s motion needs

to be captured, the positions in the chunk are zero-meaned — each position is subtracted

by the mean of all the positions in the chunk µj,k, therefore C1,1 can be re-written as

C1,1 = [x0−µ1,1, x1−µ1,1, x2−µ1,1, x3−µ1,1, φ0, φ1, φ2, φ3, b0, b1, b2, b3, G0, G1, G2, G3].

(4.6)

This offset is performed in order to create an invariance to the player’s location within

the level (see Figure 4.4). The chunks in a playthrough are taken in a manner illustrated

in Figure 4.2, where consecutive chunks are shifted forward by
w

2
each time. For example

C1,2 would encompass the range i = 2, 3, 4, 5 in (4.5). This is continued until the end of

the playthrough; the whole process is repeated for the other playthroughs and the chunks

are stacked in a matrix X, whose covariance Σ is calculated. After this the eigenvalues

and eigenvectors of Σ are found; each eigenvalue represents the amount of variance along

the direction of its corresponding eigenvector i.e. the energy along that dimension. We

seek a projection which maximises the variance. Therefore the eigenvectors are stacked

in descending order of their eigenvalues to produce a rotation matrix R where most of

65

the energy is pushed into the first dimension, and the dimensions with little to no energy

are discarded (here we keep 99.9% of the energy). R is then applied to the original data

matrix to transform it to a lower dimensional space and the first two columns of this

newly represented data matrix Z (corresponding to the two highest-energy features) are

plotted against each other (Figure 4.5a).

Figure 4.4: Illustration of zero-meaning two x-position sequences in two different
locations of a 1-D platformer. After zero-meaning, the resultant arrays are identical,
allowing the PCA algorithm to interpret these as two identical motions

Clustering is then applied to the newly represented data to isolate the various motion/geometry

sequences. Three different clustering algorithms were considered for this task: k-means,

DBSCAN and mean-shift. DBSCAN and mean-shift were considered because the number

of clusters is dynamically determined from the data. Also they are both density-based

methods, and hence were thought to have been ideal for isolating the dense structures

observed in the PCA results. Figures 4.5b-d feature the results of clustering for all

three algorithms. It was difficult to search for a set of parameters which produced a

sufficient number of clusters for DBSCAN; mean-shift began to produce similar results

to k-means as the bandwidth of the kernel was increased, but required significantly more

computation time. Therefore k-means was used throughout the pipeline for the sake of

simplicity and speed. We denote the number of clusters derived at this stage as κ1.

66

(a) Original. (b) K-means.

(c) DBSCAN. (d) Meanshift.

Figure 4.5: Results of PCA (a) and applying different clustering algorithms to them
(b-d). The distribution of the points is centered on (0,0) due to zero-meaning and
possibly a high frequency of occurrences of the players standing still. The apparent
drifting of points to the right is likely due to the presence of bounties in the data, as
these are always equal to or greater than zero.

One can infer the in-game motions to which the clusters correspond by extracting their

centres, before processing them backwards through PCA. Figure 4.6 shows the results

of this. One would expect the existence of these kind of motions in an action game like

For Honor.

67

Figure 4.6: Inferred motions from using windows with w = 6 and κ1 = 20.

4.1.4 Player Actions & Clustering

1 2 3

4 5

6

7

8

5

1 2 3

4

Spatial clusters
corresponding to particular
motion and geometry in
3w seconds.

Vector containing occurrences of clusters and
actions in 3w’ seconds.

Clusters
corresponding to
particular behaviours
in 3w’ seconds.

Histogram containing
occurrences of behaviour
clusters in 3w’’ seconds.

 1 2 3 4 5

Figure 4.7: The 2-fold PCA and clustering method used for processing the data. In this
example κ1 = 8 and κ2 = 5.

68

Figure 4.7 illustrates the remainder of the process for clarity. Once specific spatial

clusters are found, we repeat the process of dividing playthroughs into chunks as before.

However this time we use a window size of w′ > w. Also instead of filling a vector with

the features already discussed, we use the results of 4.1.3 to count the number of times

these clusters occur within that window. Therefore the vector for a given chunk may

resemble the following:

C′j,k = [S1, S2, S3 . . . Sκ1], (4.7)

where Si is the number of times the ith cluster occurs in the chunk. Actions which occur

in this same interval are concatenated on to this vector:

C′j,k = [S1, S2, S3 . . . Sκ1 , A1, A2, A3 . . . ANA
], (4.8)

where Al is the number of occurrences of the lth action in the chunk and NA is the

number of possible actions. PCA and clustering are carried out as before, giving rise

to κ2 clusters which essentially correspond to player behaviours. Finally, chunks of size

w′′ > w′ are taken per level playthrough; these behaviour clusters are then searched for

in these intervals to produce the final bag-of-words histograms containing κ2 bins. Each

histogram represents a moment in a playthrough.

4.2 Moment Detection — Weakly Supervised Learning

The first method of moment detection uses weakly supervised learning (WSL) to select

one moment per playthrough which is considered to be that which most strongly influenced

the rating given to that playthrough. These moments and their corresponding playthrough

ratings are used to train two model: one which can map an unseen playthrough’s

moments to a score representing the predicted feedback; the other which can map a

level’s geometry to a predicted feedback score.

4.2.1 Multiple Instance Learning

WSL is applied via a MIL approach closely following the method outlined in Section 2.3

for action detection in videos. Here the goal is moment detection in playthroughs. Unlike

that method, the histograms are not root-normalised since the chunks they represent are

all the same size. Therefore conventional normalisation can be used without worrying

about biases towards histograms of a particular size. Also the concepts of objectness

and saliency do not translate well to gameplay moment detection, hence we do not

69

introduce these steps during WSL. When searching for “good” moments, the positive

bags correspond to playthroughs that received an overall rating of 5 stars, while the

rest of the playthroughs correspond to negative bags. The main objective here is: given

a set of playthroughs that have been rated 5 stars and a set that have not, select one

moment per playthrough which had the strongest influence on that 5 star rating. In

other words, select one instance from each positive bag such that the selection minimises

equation (2.13). This function is used instead of equation (2.14), since the lack of an

abundance of negative instances compared to positive ones invalidates the utilisation of

negative mining. Given the number of positive bags, and the number of instances per

bag, brute force is not a feasible approach (the number of possible selections can be

as high as ≈ 10323). Solving this involves the implementation of a genetic algorithm,

which searches for optimal solutions amongst a population of random candidates. The

implementation of the algorithm can be found in Appendix C. A constant mutation

rate is used, and new random candidates are added during the optimisation in order to

diversify the population and reduce the chance of falling into a local optimum.

In order to locate “bad” moments, WSL is carried out again; this time treating playthroughs

with 1 or 2 stars as positive bags, and the rest as negative. An illustration of WSL being

carried out on playthroughs to extract “good” and “bad” moments can be found in

Figure 4.8.

For both “good” and “bad” moments, WSL is run a second time but with the selected

instances removed from all of the positive bags. The reason for doing this is because WSL

assumes that there is a single moment per playthrough which most strongly influences

the feedback given for that session. However unlike objects-of-interest which occupy a

finite discrete number of pixels in an image, moments in a playthrough are continuous

— the point at which one moment ends and another begins is ambiguous. Also during a

game, consecutive moments may be causally connected. Therefore selecting the second

strongest moments is a better reflection of the psychology of player enjoyment. It also

allows for slight expansion of the data set used for the next step in the pipeline.

70

Figure 4.8: Diagram of WSL being carried out on a pair of playthrough sets to extract
“good” moments (orange), and on another pair to extract “bad” moments (blue). The
star ratings of the playthroughs in each set is shown on top.

4.2.2 Model Training

The “good” and “bad” moments obtained from WSL are used to train a model which

can serve as either a player experience model for playthroughs, or an evaluation function

for levels. Training the model using these moments directly would result in a system

that only achieves the former — to take playthroughs as input for predicting their

feedback. Therefore in order to build a system which can take in a level i.e. map

geometry as input, the training data must also consist solely of geometry. This is achieved

by separating the geometry from the other information within each moment. More

specifically each WSL-derived moment is located within its playthrough, before only

extracting the information associated with the geometry covered within that moment.

In the WSL examples covered in Section 2.3, the specific image patches/video segments

were used to train classifiers. Here regression is more appropriate because classification

will only be able to give a binary output i.e. good/bad; we require a continuous output

such as a predicted rating ranging between 0 and 5. Since the input world state of each

moment is binary, a neural network is trained using TensorFlow. Cross entropy is used

for the cost function, and optimisation is carried out using Adam. The set of moments is

split into a training and validation set according to a ratio of 80:20; Figure 4.9 features

a visualisation of the optimisation’s performance during a typical run. The validation

loss/accuracy appears to slightly improve before dropping and staying roughly constant

throughout the process — this may be attributed to overfitting, as the optimiser starts

to model noise within the training set. Attempts to improve the validation accuracy via

regularisation and implementing an ensemble model were unsuccessful.

71

0 100 200 300 400 500
Epochs

0

5

10

15

20

Cr
os

s E
nt

ro
py

 L
os

s

Training
Validation

(a) Cross entropy loss.

0 100 200 300 400 500
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Training

Validation

(b) Accuracy.

Figure 4.9: Graphical visualisation of optimisation during regression model training for
WSL method.

4.2.3 Predicting Playthrough Feedback

The trained model is applied to a set of playthroughs from a map which is not used

in the original training data. The purpose of this is to assess the system’s ability to

predict the feedback of an individual playthrough, by comparing its performance to

the ground truth (the given rating in this case). These playthroughs contain the same

type of data as those used in training. The system evaluates a playthrough by splitting

it into chunks of length w′′, before transforming the information in each chunk into a

moment. Then each moment is inputted into the model, returning a rating out of five

stars for each interval. At this point, a function is needed which can convert all of these

72

individual ratings into one overall rating for the playthrough. In other words for a given

playthrough with rating R containing n chunks, find the function f such that:

R = f(r1, r2, r3, . . . rn), (4.9)

where ri is the rating of the ith chunk in the playthrough. The way in which a player

decides what rating to give would no doubt vary from person to person [17] — this is

why several different metrics were attempted for calculating the overall rating:

� Mean — computing the mean is based on the assumption that all moments contribute

to the overall rating with equal weight.

� Mode — this is linked to the idea that the player will base their feedback on the

most memorable moments. For example if a playthrough’s feedback consisted of

[5, 5, 1, 5, 5, 1, 5], the 1-star moments would be easily forgotten. In Masthoff’s paper

this is referred to as “avoiding misery” i.e. ignoring a low rating due to it being

overshadowed by the numerous higher ratings [40].

� Weighted average — moderate values are discarded before computing the mean.

This is based on the idea that more extreme moments will be more memorable,

and that people have an affinity for extremes when it comes to giving feedback.

This is apparent in Figure 4.1, as 5 stars and 1 star are the two most frequent

ratings given in the training set of playthroughs. In fact this may be why some

companies have opted for binary feedback systems, rather than 5-star ratings [25].

� Most extreme — the single most extreme value is taken to be the overall rating.

This is simply the motivation of the weighted average metric taken to its greatest

extent, and is also linked to the assumption of using WSL.

4.3 Moment Detection— Probabilistic Regression Ensemble

The second method of moment detection applies PCA and clustering to the moments.

This is combined with the playthrough ratings to form a probability distribution over

the rating for each cluster. These moment clusters and their corresponding rating

distributions are, through various metrics, used to predict the rating of unseen playthroughs.

They are also used to train a model which can map level geometry to a rating probability

distribution representing predicted feedback.

73

2 1 0 1 2
Z'[:,0]

3

2

1

0

1

2

Z'
[:,

1]

1
2
3
4
5

Figure 4.10: Result of applying PCA to the moment histograms, where each moment
(datapoint) is colour coded according to the rating of its playthrough.

4.3.1 Further Clustering

PCA is applied to the bag-of-words histograms, the results of which are featured in

Figure 4.10. Each histogram has been colour coded according to the rating assigned

to its playthrough. K-means clustering is then applied to these results, in which each

cluster corresponds to a probability distribution over the rating. Figure 4.11 illustrates

this entire process for clarity. One can think of this collection of clusters as an ensemble

of probabilistic regressors. A playthrough consists of a sequence of clusters (moments).

In order to determine the extent to which each cluster influences the player’s feedback

for that playthrough, one must observe the difference between consecutive clusters. For

example a transition between two clusters which are very different to each other could

indicate that something important has occurred within the session; something which

could significantly affect the overall feedback. Visualising this in 2-D space involves

applying Multidimensional Scaling (MDS) to the matrix of Jaccard distances between

the clusters. Figure 4.12 illustrates the results of this, as well as the transitions between

74

moments during playthroughs. The jumping between distant clusters indicates the

sudden occurrence of something significant, and possibly influential.

Figure 4.11: Diagram showing how the PRE method involves taking playthroughs
with their corresponding ratings (left), applying clustering to their moments (middle),
resulting in probability distributions over the ratings (right).

Figure 4.12: Frame from animation of playthroughs in terms of clustered moments —
each point represents a specific type of moment and the lines represent the transitions
between those moments as the playthrough occurs. The colour of the cluster represents
its 5-star rating.

75

4.3.2 Cluster Voting for Predicting Playthrough Feedback

Each cluster corresponds to a probability distribution over the rating, represented as a 5

bin histogram where each bin corresponds to a star. Now that each playthrough consists

of a series of distributions, the next step is to formulate a method of combining these

distributions so they would correspond to the overall rating of that playthrough. We

refer to this method as cluster voting since each cluster (moment) gets a “vote” on how

influential it is towards the overall rating. This influence is determined by the weight

assigned to it — how do we calculate the weight for each cluster such that for each

playthrough:

R =
N∑
i=1

ωici, (4.10)

where R is the overall rating of the playthrough, ωi is the weight assigned to the ith

cluster and N is the number of clusters in the playthrough? The range of values for R

depends on whether our model is binary or multinomial. In a binary model we are only

concerned if the feedback is good or bad, corresponding to a value of 1 or 0 respectively.

However in a multinomial model it takes a value from 1 to 5. Four metrics were created

for the purposes of determining a suitable way of modelling a user’s overall feedback as

a function of the moments they experienced:

1. Equal weighting — every playthrough is assigned the same weight. This is based

on the assumption that every moment contributes to the overall rating equally.

2. Lowest entropy — every moment is assigned a weight of zero except the one

with the lowest entropy. This is due to the fact that the distribution with the

lowest entropy will be most dissimilar to the others i.e. the moment in which

the most significant change occurs during gameplay. This is inspired by WSL as

we are choosing one key moment of interest from each playthrough, based on its

dissimilarity from all of the other moments.

3. Log entropy weighting — this is an existing entropic method for weight determination

of criteria:

ωi = 1 +
1

log(n)

n∑
j=1

pij log(pij), (4.11)

where n is the number of possible outcomes (5 for multinomial, 2 for binary) and

pij is the probability value in the jth bin of the ith moment. This formula was

taken from [30].

76

4. Our formula — this was developed by introducing the following boundary conditions:

S = 0, ω =∞ (4.12)

S = − log(
1

5
), ω = 0, (4.13)

where S is the Shannon entropy of the cluster. The first condition is based on

the fact that S = 0 implies every moment belonging to that cluster has the same

rating; there is maximum certainty of the rating. The following equation satisfied

these two conditions:

ωi =
n− 1

(1b)
−Si − 1

− 1, (4.14)

where b is the logarithm base (2 in our case).

4.3.3 Model Training for Level Evaluation

In order to build a system which can evaluate levels, the geometry for each moment in

the clusters is separated in a similar manner to that described in Section 4.2.2. However

unlike the previous method, this system would output a probability distribution over

the rating, rather than a single scalar value. Due to this desired output, a simple

neural network with a Dirichlet output layer is trained using Tensorflow and Keras.

Optimisation is carried out using Adam, and the cost function corresponds to the

negative log-likelihood of the Dirichlet distribution with the inclusion of a prior. Appendix

D gives this in more mathematical detail. The training and validation sets are split

according to a ratio of 80:20 and shuffled according to a random seed. The performance

of the model on these sets during optimisation for a typical run is visualised in Figure 4.13

- convergence to an optimum solution appears to be achieved, given that the validation

accuracy exceeds 0.9 by the end of the optimisation process.

77

0 100 200 300 400 500
Epochs

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ne
ga

tiv
e

Di
ric

hl
et

 L
os

s

×104

Training
Validation

(a) Negative Dirichlet Loss.

0 100 200 300 400 500
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Training
Validation

(b) Accuracy.

Figure 4.13: Graphical visualisation of optimisation during regression model training for
the PRE method.

78

4.4 Heat Map Generation

Figure 4.14: Illustration of heat map construction for map evaluation: two random paths
have been plotted on a mesh, with ray casting at each point hitting the closest vertices,
and the colouring of the triangles corresponding to the predicted feedback of those paths.
Green represents positive feedback, red negative, with yellow indicating an even mixture
of the two.

After training a model which can take level geometry as input and output a measure of

the rating, we now obtain the fundamental tool for evaluating levels. This evaluation is

presented visually as a “heat map of enjoyment” — regions of the level are colour-coded

according to the outputted ratings given to them, via the input of these regions’ geometry

into the trained model. The creation of such heat maps first involves plotting many

random paths (we use 104) throughout the level, before computing the geometry for

each path via ray casting (Figure 4.14). In order to ensure that these paths reflect

actual player movement as accurately as possible, a Markov model is trained using a

method loosely inspired by Wang, Yang and Shi [67]. The points along these random

79

paths are taken from the position cluster centres derived in Section 4.1 — the number

of transitions between clusters is then computed and stored in a matrix, which is finally

converted to a transition probability matrix through normalisation of rows:

MT =


p11 p12 . . . p1Nmc

p21 p22 . . . p2Nmc

...
...

. . .
...

pNmc1 pNmc2 . . . pNmcNmc

 , pij =
1∑Nmc

j=1 Tij
Tij , (4.15)

where Tij is the number of times in the playthrough data that a transition takes place

from position cluster i to j. This helps to avoid plotting paths through non-traversable

areas of the map. The geometry for each path is then inputted into the trained model

which outputs a score. This score is then assigned to every vertex which is within a

certain distance of the path. Once all scores from all paths have been assigned, the

mean score for each vertex is calculated and then converted into an RGB colour. Figure

4.15 features an example of a heat map generated this way.

Figure 4.15: An example of a rendered heat map, where the vertices have been coloured
according to the predicted normalised scores of the random paths plotted within their
vicinity.

80

4.5 Algorithm Performance

Figure 4.16: Illustration of Jaccard index for bounding boxes in computer vision, taken
from [49]. An index of greater than 0.5 starts to indicate strong agreement.

In order to assess the performance of the evaluation tool, the algorithmic heat maps are

compared to those produced by the human participants in Section 3.2.2. Quantification

of this comparison, the heat map accuracy (HMA), is achieved through the calculation

of a metric related to the Jaccard index. This is defined as the Intersection over Union

(IoU) and, in the context of computer vision, is a measurement of the area of overlap

between two bounding boxes (see Figure 4.16). In the context of our project, image

masking is used to compute the HMA. For both types of heat map, the good, bad and

neutral areas are isolated separately and their corresponding overlaps are calculated

before combining them into one final accuracy score. However our system outputs a

continuous heat map; we require a method of introducing thresholds for the boundaries

between good, bad and neutral on the score scale in Figure 4.15. Additionally we assume

that every user will have their own individual thresholds for these boundaries. For these

reasons, cumulative distribution functions (CDFs) are introduced. The scores for each

vertex are sorted before putting them through a CDF transform (Figure 4.17). Then

they are put through the inverse CDF transform of the user map (Figure 4.18). Since

the CDFs of each user will always differ (see Figure 4.19), HMA calculations are carried

out on a per-user basis. As an example, Figure 4.20 shows the image masks for the heat

map featured in Figure 4.19d.

81

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Original score

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
or

m
ed

 sc
or

e

Figure 4.17: The CDF of an algorithmic heat map.

0.0 0.2 0.4 0.6 0.8 1.0
Transformed score

0.0

0.2

0.4

0.6

0.8

1.0

Or
ig

in
al

 sc
or

e

Figure 4.18: The inverse CDF of a user map.

Calculation of the overlap for a specific area is performed on a per-pixel basis:

HMA =
Pgood + Pbad + Pneutral

Pfull
, (4.16)

where Pgood, Pbad and Pneutral are the number of matching pixels between the algorithmic

and user maps for the good, bad and neutral regions, respectively. Pfull is the number

of pixels in the full mask (the traversable region of the map).

82

(a) Original. (b) User 1.

(c) User 8. (d) User 10.

Figure 4.19: An example of an algorithmic heat map on Citadel Gate, and the resultant
heat map from transforming it via the CDF of a given user’s map.

Since in practice our system is intended to be applied to maps which are still under

development, its performance must be assessed by testing it on “unseen” maps. Therefore

for both map evaluation and playthrough predictions, the system is trained using the

data from five maps and tested on data from the sixth — this is carried out across all

six maps used in the project.

83

(a) Good. (b) Bad.

(c) Neutral.

Figure 4.20: Image masks for the heat map in Figure 4.19d.

84

Chapter 5

Results and Discussion

The pipeline is dependent on the configuration of hyperparameters associated with

feature representation, namely the window sizes into which the chunks are split as well

as the number of clusters used in the two steps (w, w′′, w′′′, κ1, κ2). Additionally

there are multiple stages within the pipeline where data is shuffled according to a seed

value. Therefore for a given configuration, the pipeline is run multiple times and the

results are loaded into histograms. The average values of the histograms for heat map

accuracy (HMA) are displayed in tables which can be found in Appendix F. Searching

for the optimal set of results is carried out by first observing the “Mean” column to

find the user with the highest “worst” score among all of the maps — this is known as

the “best-matched user” (BMU). Then the median for each of these user’s sets across

all configurations is computed, and the highest is selected. The optimum configuration

when using weakly supervised learning (WSL) is (2, 20, 50, 22, 7) and that for using a

probabilistic regression ensemble (PRE) is (6, 16, 50, 12, 3). The results featured and

discussed within this chapter are be those produced under these configurations, unless

stated otherwise.

5.1 Evaluating Maps

In order to determine which method of capturing geometry around the player would be

used, a set of HMAs is computed for random configurations of these hyperparameters

using the four methods described in Section 4.1.2. These can be found in Appendix E

and they indicate that using the intersection distance gives rise to high accuracies across

all six maps for at least one of the users. Therefore this is the method of local geometry

capture used to produce our main results.

85

Figures 5.1 and 5.2 feature the histograms of HMAs for all users under the optima of WSL

and PRE respectively. The wide range of values is due to the fact that the algorithmic

maps produced by the system are a prediction of the average player feedback, since

it has been trained using the in-game activity of hundreds of players. The user maps

are a reflection of that individual user’s feedback, therefore discrepancies between the

algorithmic and user maps are to be expected. Some users are better representatives of

the average For Honor player than others — this becomes clearer when we only display

the results for the BMU and the worst-matched user (WMU), featured in Figures 5.3

and 5.5 for WSL, and Figures 5.4 and Figure 5.6 for PRE. We can see that in most

cases, the distribution of values is greater in the BMU and WMU histograms for WSL

compared to PRE. This is most likely due to the increased source of noise introduced

by WSL, since this process is influenced by a random seed in the genetic algorithm in

addition to that of the neural network. The only notable exception to this is Sanctuary

Bridge, where the variance appears to be equal across both methods. However this may

be attributed to Sanctuary Bridge’s significantly small size compared to the other maps.

It is important to note that the BMU and WMU are the same for both methods —

these are User 6 and User 10 respectively. This is easier to observe in Figure 5.7, which

features scatter plots of accuracies across all users. In fact, the ranking of users in order

of lowest accuracy value is almost identical in both methods, with the exception of two

users. Focusing on the BMU, their accuracies score greater than 50% across all maps for

both methods, indicating good agreement between their feedback and that predicted by

our system. However PRE gives rise to a smaller range of values, with a slightly higher

average.

Figure 5.7b indicates that the WMU can be considered an outlier in comparison to the

other users, given the distribution of their values. This is further exemplified when

we look at the qualitative feedback across all users (Appendix B). Most users reacted

positively to the points where minions battle, due to the intense gameplay, open space

and the ability to easily “farm up” their rank. By contrast the WMU saw these areas as

“clickfests”, with unreasonable amounts of space. Given their low values, combined with

their qualitative feedback, it is plausible that the WMU represents a minority opinion

among the For Honor community — a dislike of intense gameplay, preferring locations

which are more isolated from combat. This may explain why they coloured most of

Sanctuary Bridge in red, since the map’s smaller size compresses the area of combat and

concentrates the intense gameplay.

Both scatter plots indicate that there is no strong correlation between map evaluation

accuracy and the field in which a given user specialises. The BMU is the only artist

86

within the set of users, however data from other artists would need to be gathered

before drawing any links between this and the feedback of general players.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(a) Citadel Gate.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(b) Overwatch.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(c) Sanctuary Bridge.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(d) River Fort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(e) High Fort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(f) The Shard.

Figure 5.1: Histograms of accuracies, expressed as percentages, for each map across all
users (WSL).

87

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(a) Citadel Gate.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(b) Overwatch.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(c) Sanctuary Bridge.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(d) Riverfort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(e) Highfort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(f) The Shard.

Figure 5.2: Histograms of accuracies, expressed as percentages, for each map across all
users (PRE).

88

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10
Pr

ob
ab

ilit
y

De
ns

ity
PDF
Data

(a) Citadel Gate.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(b) Overwatch.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(c) Sanctuary Bridge.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(d) River Fort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(e) High Fort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(f) The Shard.

Figure 5.3: Histograms of accuracies, expressed as percentages, for the BMU across all
maps (WSL).

89

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(a) Citadel Gate.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(b) Overwatch.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(c) Sanctuary Bridge.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(d) Riverfort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(e) Highfort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(f) The Shard.

Figure 5.4: Histograms of accuracies, expressed as percentages, for the BMU across all
maps (PRE).

90

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Pr

ob
ab

ilit
y

De
ns

ity
PDF
Data

(a) Citadel Gate.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(b) Overwatch.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(c) Sanctuary Bridge.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(d) River Fort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(e) High Fort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(f) The Shard.

Figure 5.5: Histograms of accuracies, expressed as percentages, for the WMU across all
maps (WSL).

91

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Pr

ob
ab

ilit
y

De
ns

ity
PDF
Data

(a) Citadel Gate.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(b) Overwatch.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(c) Sanctuary Bridge.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(d) Riverfort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(e) Highfort.

0 20 40 60 80 100
Heat Map Accuracy (%)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y
De

ns
ity

PDF
Data

(f) The Shard.

Figure 5.6: Histograms of accuracies, expressed as percentages, for the WMU across all
maps (PRE).

92

6 4 3 8 5 1 7 9 2 10
User

20

30

40

50

60

70

80

He
at

 M
ap

 A
cc

ur
ac

y
(%

)

Programming
Dev Testing
Game Design
Art
Production
Consumer Support
Player Experience

Method 1.

6 4 3 8 5 9 7 1 2 10
User

20

30

40

50

60

70

80

He
at

 M
ap

 A
cc

ur
ac

y
(%

)

Programming
Dev Testing
Game Design
Art
Production
Consumer Support
Player Experience

Method 2.

Figure 5.7: Scatter plots of heat map accuracies for all users and their maps under
the optimal hyperparameter configurations, where the users have been ordered by their
lowest accuracy, and colour coded according to their role within the industry.

93

5.2 Predicting Playthrough Feedback

With regards to predicting the ratings of playthroughs, the accuracy of the predictions

would have to be compared to the baseline. Table 5.1 features the baseline accuracy for

the playthrough training and test sets for all six maps under evaluation. This is found

by computing the percentage of playthroughs within each set which are rated 5 stars —

the metrics must be able to perform better than simply guessing a blanket rating for all

playthroughs.

Note: In this context, the training set refers to the set of playthroughs associated with

the five maps involved in training the system. The test set refers to the set of “unseen”

playthroughs i.e. those associated with the sixth map not used in training.

Test Map
Baseline Accuracy (%)

Training Test

Citadel Gate 58.1 52.8

Overwatch 54.9 59.5

Sanctuary Bridge 53.2 66.7

River Fort 55.0 60.3

High Fort 54.3 72.1

The Shard 57.2 46.1

Table 5.1: Baseline accuracies for training and testing playthrough sets.

Tables 5.2 and 5.3 respectively show the training and test accuracies of the four metrics

discussed in Section 4.2.3. They clearly show that Metric 4 (using the single most

extreme rating in a playthrough) gives the most accurate results. However none of the

metrics are able to produce an accuracy meeting the baseline across any of the maps, let

alone surpassing it. Also Metric 3 (weighted average) produces the exact same results

as Metric 1 (mean) in all cases, indicating that using WSL produces a model which

will only predict more extreme values from given moments. This makes sense, as the

corresponding ratings for the moments outputted using WSL are either 0 or 1.

94

Test Map
Test Accuracy (%)

Metric 1 Metric 2 Metric 3 Metric 4

Citadel Gate 48.1 48.3 48.1 48.9

Overwatch 36.7 37.8 36.7 40.3

Sanctuary Bridge 34.6 35.7 34.6 39.2

Riverfort 39.6 40.4 39.6 42.8

Highfort 30.6 32.3 30.6 35.9

The Shard 45.6 46.6 45.6 49.8

Table 5.2: Training accuracies for predicting playthroughs using WSL.

Test Map
Test Accuracy (%)

Metric 1 Metric 2 Metric 3 Metric 4

Citadel Gate 41.2 41.2 41.2 41.7

Overwatch 36.1 38.7 36.1 43.7

Sanctuary Bridge 43.2 44.2 43.2 46.9

Riverfort 36.6 37.1 36.6 41.6

Highfort 36.8 38.0 36.8 40.1

The Shard 34.5 34.6 34.5 39.0

Table 5.3: Test accuracies for predicting playthroughs using WSL.

Tables 5.4 and 5.5 respectively feature the training and test prediction accuracies of the

four metrics discussed in Section 4.3.2 for a multinomial model. The training accuracies

achieved for metrics 1–3 across all maps either meet or slightly exceed the baseline, while

metric 4 falls slightly below the baseline. All of the metrics display poor performance

when looking at their test accuracies which fall far below the baseline. When switching

to a binary model (see Tables 5.6 and 5.7) the accuracies display some improvement,

with all of the metrics exceeding the training baseline. However despite the increase in

performance, their test accuracies fail to meet the respective baselines for all maps except

The Shard. Ultimately neither method produces a playthrough feedback predictor which

is able to significantly exceed its respective baseline, therefore our system is not effective

for this purpose.

95

Test Map
Training Accuracy (%)

Metric 1 Metric 2 Metric 3 Metric 4

Citadel Gate 58.3 58.3 58.3 56.6

Overwatch 55.0 55.0 55.9 54.4

Sanctuary Bridge 53.8 53.8 53.8 52.9

Riverfort 55.3 55.3 55.3 54.0

Highfort 54.6 54.3 54.6 53.6

The Shard 57.9 57.4 57.9 56.7

Table 5.4: Training accuracies for predicting playthroughs using PRE via a multinomial
model.

Test Map
Test Accuracy (%)

Metric 1 Metric 2 Metric 3 Metric 4

Citadel Gate 23.2 23.5 23.2 21.4

Overwatch 24.2 24.8 24.2 17.0

Sanctuary Bridge 30.1 30.1 30.1 24.4

Riverfort 55.6 58.7 55.6 48.9

Highfort 50.0 48.5 50.0 36.8

The Shard 30.5 30.5 30.5 24.8

Table 5.5: Test accuracies for predicting playthroughs using PRE via a multinomial
model.

Test Map
Training Accuracy (%)

Metric 1 Metric 2 Metric 3 Metric 4

Citadel Gate 62.5 62.8 62.3 60.1

Overwatch 59.4 60.6 59.4 58.4

Sanctuary Bridge 58.8 58.0 58.8 57.8

Riverfort 59.1 59.4 63.1 59.7

Highfort 60.9 59.7 60.9 59.0

The Shard 60.1 59.8 60.2 58.8

Table 5.6: Training accuracies for predicting playthroughs using PRE via a binary model.

96

Test Map
Test Accuracy (%)

Metric 1 Metric 2 Metric 3 Metric 4

Citadel Gate 47.7 48.2 47.7 46.4

Overwatch 43.8 41.8 43.8 39.2

Sanctuary Bridge 42.3 41.7 42.3 39.1

Riverfort 54.0 54.0 54.0 46.0

Highfort 39.7 41.2 39.7 39.7

The Shard 58.9 57.4 58.9 51.1

Table 5.7: Test accuracies for predicting playthroughs using PRE via a binary model.

97

Chapter 6

Conclusion

The main goal of this research was to create a system which, given a game level as input,

can predict the feedback the level will elicit via the application of machine learning

to gameplay, geometry and feedback data. We have achieved this by visualising the

feedback in the form of heat maps of enjoyment, whose accuracies have been determined

via comparison to coloured maps produced from user study participants. Two distinct

methods were used to train the system — one employing WSL, and the other involving a

PRE. Both of the methods have produced heat maps which are in good agreement with

users, however using WSL led to outputs which were more susceptible to noise and took

significantly longer to run. Also this method suffered from overfitting during the training

process. Therefore PRE is the preferred method to use. The features extracted from

the data were also used to train a system which can predict the ratings of playthroughs,

however neither method was able to produce an effective predictor.

6.1 Limitations

Since it requires existing telemetry data for training, the presented system may be more

suited for DLCs e.g. developing additional maps for a title which has already been

released, and using gameplay from this title as training data. Sequels may also be

an option, as they generally contain the same gameplay features as their predecessors.

However one should not completely dismiss the system as a tool for designers working

on a completely new title — games within the same genre will share a vast range of

common features, regardless of whether they have been developed by different teams.

Searching for an appropriate data set was one of the most difficult aspects of the

98

project. Training the system is heavily dependent on the features which are available for

extraction. For example the relatively low sampling rate of 1 position every 3 seconds

constrains the size of the chunks into which the playthroughs could be split for carrying

out PCA. The lack of regularly sampled player positions was the reason that data sets

from other games were rejected for use in the project. However this limitation is mainly

associated with the telemetry and storage capabilities of game development studios.

Feedback data is also essential for training the system, however this does not necessarily

have to be limited to a 5-star rating — a binary like/dislike system could also be

used. Additionally if there are no explicit feedback metrics available, one could infer a

“rating-by-proxy”. For example quitting in the middle of a match could be interpreted as

negative feedback. Alternatively if a game’s multiplayer modes rotate between random

maps in the lobby with the ability to vote to skip, a map’s unpopularity may be reflected

in the number of times it has been skipped.

There were limitations to the manner in which the heat map accuracies (HMAs) were

calculated. The algorithmic maps were produced by automatically colouring the vertices

of the map, whereas the users were required to colour a top-down image of the map.

This meant that comparisons between the two could only be achieved through pixel

matching; this method cannot take into account areas with multiple levels e.g. bridges,

walkways and multi-storey buildings. One way of resolving this would have been to ask

participants to navigate the 3-D map and colour the regions using graphics software

e.g. Blender. However participants may have found this process tedious and awkward;

it may also have hindered or at least slowed down gathering of detailed user feedback.

6.2 Extensions

Since the system has been trained using data collected from hundreds of playthroughs,

the heat maps it produces are a prediction of the average feedback across a vast number

of players. However one way of improving the system could be to take into account

different types of players i.e. for each game map, produced multiple heat maps, each

displaying the predicted feedback of a specific type of player. This could be achieved by

collecting data from the players’ profiles such as:

� Total play time.

� Current level for each hero type.

� Game count for every game mode.

99

� Percentage completion of the campaign or trials.

� Total kill/death and win/loss counts.

This information could be fed into clustering algorithms to derive specific player types

(similar to the work of Bauckhage et al. [5], Melhart et al. [41] and Ferguson et al.

[15]) and combined with the existing system to diversify its feedback. Augmenting the

system with this capability would be useful for a designer aiming to tailor their map to

a particular subset of their audience.

In Figure 1.1 it was illustrated that player experience modelling (PEM) and content

quality evaluation comprise half of the experience-driven procedural content generation

(EDPCG) framework. A natural extension of the project would be to complete the

framework by combining the system with PCG algorithms, resulting in a tool which

can automatically generate multiple levels in which the designer will be able observe the

predicted player reception.

6.3 Impact

While the system has not been integrated into a level designer toolbox or used in the

development of any games at the time of writing, the project has attracted a great deal

of interest from other teams across various studios. For example after presenting at

UDS 2021 , the leader of another team was interested to see a research project other

than theirs which placed an emphasis on geometry. Additionally at the La Forge Open

House 2021, there was discussion of potential collaboration with another team working

on a PCG tool — we discussed the idea of using our level evaluation tool to filter out

unwanted maps amongst a population of candidates produced by their system. This

links to the completion of the EDPCG framework mentioned in the previous section,

as observing the predicted feedback in the candidates may help designers choose the

candidate they wish to be the final design. Overall this shows that there is enormous

potential for our system to be utilised in industry, fulfilling the mission statement of the

CDE.

6.4 Outlook

We have presented a method for building a tool which can potentially provide designers

with invaluable insight into how their creations will be received by their target audiences.

100

The presented system is meant to assist the designer without taking away their control or

compromising their workflow. At the beginning of this thesis, the evolution of computer

games was described in terms of graphics, play time and required manpower. The

introduction of automation in the development lifecycle was also discussed, and the

combination of our system with PCG software would be an extremely important tool

for the game industry as a whole. However a more significant area undergoing rapid

growth in recent years is data collection. Data is underpinning more and more aspects

of our society, and harnessing the data of players fuels systems such as the one presented

in this thesis. Our results and conclusions would be non-existent without the ability

to collect, process and analyse data. As companies are able to gather a wider variety

of player data in more efficient ways, PEM and level evaluation tools will continue to

improve, and designers will be able to deliver truly personalised gaming experiences.

101

Bibliography

[1] Abbott, T., 2010. Mda framework - unconnected connectivity [Online]. Gamasutra.

Available from: http://www.gamasutra.com/blogs/TuckerAbbott/

20101212/88611/MDA_Framework_Unconnected_Connectivity.php

[Accessed 26/04/2018].

[2] Alexe, B., Deselaers, T. and Ferrari, V., 2010. What is an object? 2010 ieee

computer society conference on computer vision and pattern recognition, 13-18 June

2010 San Fransisco. IEEE, pp.73–80.

[3] Amores, J., 2013. Multiple instance classification: Review, taxonomy and

comparative study. Artificial intelligence, 201, pp.81–105.

[4] Anon., 2014. Introduction to level design (internal ubisoft document).

[5] Bauckhage, C., Drachen, A. and Sifa, R., 2015. Clustering game behaviour data.

Ieee transactions on computational intelligence and ai in games, 7(3), pp.266–278.

[6] Bellman, R., 1957. Dynamic programming. Princeton: Princeton University Press.

[7] Björk, S. and Holopainen, J., 2004. Patterns in game design. USA: Charles River

Media Inc.

[8] Caicendo, J.C., C., M., Goodman, A., Singh, S. and Carpenter, A.E., 2018. Weakly

supervised learning of single-cell feature embeddings. The ieee conference on

computer vision and pattern recognition (cvpr), 18-22 June 2018 Salt Lake City.

IEEE, pp.9309–9318.

[9] Cao, L., Liu, Z. and Huang, T., 2010. Cross-dataset action detection. Proceedings

of the ieee computer society conference on computer vision and pattern recognition,

13-18 June San Francisco, California. IEEE, pp.1998–2005.

102

http://www.gamasutra.com/blogs/TuckerAbbott/20101212/88611/MDA_Framework_Unconnected_Connectivity.php
http://www.gamasutra.com/blogs/TuckerAbbott/20101212/88611/MDA_Framework_Unconnected_Connectivity.php

[10] CDE, 2021. Centre for digital entertainment official website [Online]. Available

from: http://www.digital-entertainment.org/ [Accessed 12/07/2021].

[11] Csikszentmihalyi, M., 1990. Flow: The psychology of optimal experience. New York:

Harper Perennial.

[12] Csurka, G., Dance, C.R., Fan, L., Willamowski, J. and Bray, C., 2004. Visual

categorization with bags of keypoints. In workshop on statistical learning in

computer vision, eccv. pp.1–22.

[13] Egenfeldt-Nielsen, S., Smith, J.H. and Tosca, S.P., 2008. Understanding video

games: The essential introduction. New York: Taylor and Francis.

[14] Fenlon, W., 2015. For honor: light strategy and heavy swords in a

medieval dueler [Online]. Available from: https://www.pcgamer.com/

for-honor-light-strategy-and-heavy-swords-in-a-medieval-dueler/

[Accessed 21/10/2020].

[15] Ferguson, M., Devlin, S., Kudenko, D. and Walker, J.A., 2020. Player style

clustering without game variables. Proceedings of the international conference on

the foundations of digital games (fdg) 2020, 15-18 September Bugibba Malta. ACM,

pp.1–4.

[16] GamesTM, 2017. The evolution of motion capture [Online].

GamesTM. Available from: https://www.gamestm.co.uk/features/

the-evolution-of-motion-capture/ [Accessed 02/01/2017].

[17] Glenski, M., Stoddard, G., Resnick, P. and Weninger, T., 2018. Guessthekarma: A

game to assess social rating systems. Proceedings of the acm on human-computer

interaction, 2(CSCW), pp.59:1–15.

[18] Green, M.C., Brock, T.C. and Kaufmann, G.F., 2004. Understanding media

enjoyment: The role of transportation into narrative worlds. Communication theory,

14(4), pp.311–327.

[19] Guckelsberger, C., Salge, C., Gow, J. and Cairns, P., 2017. Predicting player

experience without the player.: An exploratory study. Proceedings of the annual

symposium on computer-human interaction in play, 15-18 October Amsterdam.

ACM, pp.305–315.

103

http://www.digital-entertainment.org/
https://www.pcgamer.com/for-honor-light-strategy-and-heavy-swords-in-a-medieval-dueler/
https://www.pcgamer.com/for-honor-light-strategy-and-heavy-swords-in-a-medieval-dueler/
https://www.gamestm.co.uk/features/the-evolution-of-motion-capture/
https://www.gamestm.co.uk/features/the-evolution-of-motion-capture/

[20] Hotelling, H., 1933. Analysis of a complex of statistical variables into principal

components. Journal of educational psychology, 24, pp.417–441.

[21] Hunicke, R., LeBlanc, M. and Zubek, R., 2004. Mda: A formal approach to game

design and game research. Proceedings of the challenges in games ai workshop,

nineteenth national conference of artificial intelligence, 25–26 July 2004 California.

California: Press, pp.1–5.

[22] Iida, H., Takeshita, N. and Yoshimura, J., 2002. A metric for entertainment of

boardgames: it’s implication for evolution of chess variants. In: R. Nakatsu and

J. Hoshino, eds. Ifip first international workshop on entertainment computing, 14–17

May 2002, Makuhari. London: Kluwer Academic, pp.65–72.

[23] IndigoEX, 2017. For honor map overviews [Online]. Available from: https:

//imgur.com/gallery/J9LuU/comment/962465585 [Accessed 20/02/2017].

[24] Ize, T., Wald, I. and Parker, S.G., 2009. Ray tracing with the bsp tree. 2008 ieee

symposium on interactive ray tracing, 9-10 August Los Angeles. IEEE, pp.159–166.

[25] Khanna, H., 2017. The psychology of rating systems

[Online]. Available from: https://hackernoon.com/

the-psychology-of-rating-systems-3103e26fddd8 [Accessed

05/04/2020].

[26] Koster, R., 2014. A theory of fun for game design. 2nd ed. Sebastopol CA: O’Reilly

Media.

[27] Lankveld, G., Spronck, P. and Rauterberg, M., 2008. Difficulty scaling

through incongruity. Proceedings of the 4th international artificial intelligence

and interactive digital entertainment conference, 22–24 October 2008, California.

California: Stanford University, pp.228–229.

[28] Laptev, I., 2005. On space-time interest points. International journal of computer

vision, 64, pp.107–123.

[29] Lazzaro, N., 2004. Why we play games: Four keys to more emotion in player

experiences. (510-658-8077). Oakland CA: XEODesign Inc.

[30] Li, C.H., 2015. Log entropy weighting [Online]. Available from: https://www.

youtube.com/watch?v=8K23Sjw_Hd4 [Accessed 03/10/2020].

104

https://imgur.com/gallery/J9LuU/comment/962465585
https://imgur.com/gallery/J9LuU/comment/962465585
https://hackernoon.com/the-psychology-of-rating-systems-3103e26fddd8
https://hackernoon.com/the-psychology-of-rating-systems-3103e26fddd8
https://www.youtube.com/watch?v=8K23Sjw_Hd4
https://www.youtube.com/watch?v=8K23Sjw_Hd4

[31] Liapis, A., 2013. Sentient sketchbook demonstration (with captions) [Online].

Available from: https://www.youtube.com/watch?v=Eop1AuFcujE

[Accessed 02/04/2020].

[32] Liapis, A., Yannakakis, G.N. and Togelius, J., 2011. Towards a generic method of

evaluating game levels. 7th aaai conference on artificial intelligence and interactive

digital entertainment (aiide-11), 11-14 October 2011 California. AAAI Press,

pp.30–36.

[33] Liapis, A., Yannakakis, G.N. and Togelius, J., 2013. Sentient sketchbook:

computer-aided game level authoring. Proceedings of the 8th international

conference on the foundations of digital games (fdg 2013), 14-17 May 2013 Crete.

Society for the Advancement of the Science of Digital Games, pp.213–220.

[34] Liapis, A., Yannakakis, G.N. and Togelius, J., 2014. Designer modeling for sentient

sketchbook. Ieee conference on computatonal intelligence and games, 26-29 August

2014 Dortmund. IEEE.

[35] Luenendonk, M., 2015. The gaming industry - an introduction

[Online]. Cleverism. Available from: https://www.cleverism.com/

gaming-industry-introduction/ [Accessed 13/04/2018].

[36] Malone, T.W., 1980. What makes things fun to learn? heuristics for designing

instructional computer games. Sigsmall ’80 proceedings of the 3rd acm sigsmall

symposium and the first sigpc symposium on small systems. pp.162–169.

[37] Mandryk, R.L. and Atkins, M.S., 2007. A fuzzy physiological approach

for continuously modeling emotion during interaction with play technologies.

International journal of human-computer studies, 65(4), pp.329–347.

[38] Mandryk, R.L., Inkpen, K.M. and Calvert, T.W., 2006. Using psychophysiological

techniques to measure user experience with entertainment technologies. Behaviour

and information technology, 25(6), pp.141–158.

[39] Martyn, C., 2019. Email exchange with senior technical designer.

[40] Masthoff, J., 2003. Modeling the multiple people that are me. Lecture notes

in artificial intelligence (subseries of lecture notes in computer science), 2702,

pp.258–262.

105

https://www.youtube.com/watch?v=Eop1AuFcujE
https://www.cleverism.com/gaming-industry-introduction/
https://www.cleverism.com/gaming-industry-introduction/

[41] Melhart, D., Azadvar, A., Canossa, A., Liapis, A. and Yannakakis, G.N., 2019.

Your gameplay says it all: Modelling motivation in tom clancys the division. Ieee

conference on games, 20–23 August 2019 London. London: IEEE, pp.61–68.

[42] Nabi, R.L. and Krcmar, M., 2004. Conceptualizing media enjoyment as attitude:

Implications for mass media effects research. Communication theory, 14(4),

pp.288–310.

[43] Nesterov, Y., 2005. Smooth minimization of non-smooth functions. Mathematical

programming, 103, pp.127–152.

[44] Pedersen, C., Togelius, J. and Yannakakis, G.N., 2009. Modeling player experience

in super mario bros. 2009 ieee symposium on computational intelligence and games,

7-10 September 2009 Milan. IEEE, pp.132–139.

[45] Pedersen, C., Togelius, J. and Yannakakis, G.N., 2009. Optimization of platform

game levels for player experience. Proceedings of the 5th artificial intelligence

and interactive digital entertainment conference, 14-16 October 2009 California.

California: AAAI, pp.191–192.

[46] Pedersen, C., Togelius, J. and Yannakakis, G.N., 2010. Modeling player experience

for content creation. Ieee transactions on computational intelligence and ai in

games, 2(1), pp.54–67.

[47] Preuss, M., Liapis, A. and Togelius, J., 2014. Searching for good and diverse game

levels. Ieee conference on computatonal intelligence and games, 26-29 August 2014

Dortmund. IEEE.

[48] Raney, A.A., 2004. Expanding disposition theory: Reconsidering character liking,

moral evaluations, and enjoyment. Communication theory, 14(4), pp.348–369.

[49] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I. and Savarese, S., 2019.

Generalized intersection over union. The ieee conference on computer vision and

pattern recognition (cvpr), 16-20 June Long Beach. IEEE, pp.658–666.

[50] Rigby, S. and Ryan, R.M., 2006. The player experience of need satisfaction. Florida:

Immersyve Inc.

[51] Rigby, S. and Ryan, R.M., 2011. Glued to games: How video games draw us in and

hold us spellbound. California: Library of Congress.

106

[52] Rigby, S., Ryan, R.M. and Przybylski, A., 2006. The motivational pull of video

games: A self-determination theory approach. Motivation and emotion, 30(4),

pp.344–360.

[53] Schell, J., 2008. The art of game design. Burlington MA: Morgan Kaufmann

Publishers.

[54] Shaker, N., Togelius, J. and Nelson, M.J., 2016. Procedural content generation in

games. Switzerland: Springer International Publishing.

[55] Siva, P., Russell, C. and Xiang, T., 2012. In defence of negative mining for

annotating weakly labelled data. In: A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato

and C. Schmid, eds. 12th european conference on computer vision, 7-13 October 2012

Florence. Springer, pp.594–608.

[56] Siva, P. and Xiang, T., 2011. Weakly supervised action detection. British machine

vision conference, 2, pp.1–11.

[57] Smith, G., 2014. The future of procedural content generation in games.

Experimental ai in games workshop at aiide, 4 October Raleigh, North Carolina.

Persson, pp.53–57.

[58] Smith, P., 2016. Going underground: How reflections tamed randomness

[Online]. Guildford: Ubisoft. Available from: http://blog.ubi.com/en-GB/

divisions-procedural-underground/ [Accessed 02/08/2018].

[59] Song, H.O., Girshick, R., Jegelka, S., Mairal, J., Harchaoui, Z. and Darrell, T.,

2014. On learning to localize objects with minimal supervision. 31st international

conference on machine learning, icml 2014, 21-26 June Beijing, China. JMLR,

pp.3582–3590.

[60] Sundström, P., 2005. Exploring the affective loop. Ph.D. thesis. Stockholm

University.

[61] Sweetser, P. and Wyeth, P., 2005. Gameflow: A model for evaluating player

enjoyment in games. Computers in entertainment, 3(3), p.3.

[62] Taylor, T., 2018. How to take your workout outdoors:

Escape to sun valley for a mountain biking adventure [Online].

Available from: https://www.si.com/edge/2017/05/05/

107

http://blog.ubi.com/en-GB/divisions-procedural-underground/
http://blog.ubi.com/en-GB/divisions-procedural-underground/
https://www.si.com/edge/2017/05/05/take-your-workout-outdoors-escape-sun-valley-mountain-biking-adventure
https://www.si.com/edge/2017/05/05/take-your-workout-outdoors-escape-sun-valley-mountain-biking-adventure

take-your-workout-outdoors-escape-sun-valley-mountain-biking-adventure

[Accessed 14/06/2018].

[63] Togelius, J., Kastbjerg, E., Schedl, D. and Yannakakis, G.N., 2011. What is

procedural content generation? mario on the borderline. Proceedings of the

2nd international workshop on procedural content generation in games. Bordeaux:

Association for Computing Machinery.

[64] Togelius, J., Yannakakis, G.N., Stanley, K. and Browne, C., 2011. Search-based

procedural content generation. Ieee transactions on computational intelligence and

ai in games, 3(3), pp.172–186.

[65] Ubisoft reflections official website, 2021. [Online]. Available from: https://

reflections.ubisoft.com/ [Accessed 12/07/2021].

[66] Uijlings, J.R., Van De Sande, K.E., Gevers, T. and Smeulders, A.W., 2013. Selective

search for object recognition. International journal of computer vision, 104(2),

pp.154–171.

[67] Wang, H., Yang, Z. and Shi, Y., 2019. Next location prediction based on an

adaboost-markov model of mobile users. Sensors (switzerland), 19(6), pp.1–19.

[68] Yannakakis, G.N. and Hallam, J., 2004. Evolving opponents for interesting

interactive computer games. Proceedings of the 8th international conference on

simulation of adaptive behavior, Los Angeles. Cambridge: MIT Press, pp.499–508.

[69] Yannakakis, G.N. and Hallam, J., 2005. A generic approach for obtaining

higher entertainment in predator/prey games. Journal of game development, 1(3),

pp.23–30.

[70] Yannakakis, G.N. and Hallam, J., 2006. Towards capturing and enhancing

entertainment in computer games. Advances in artificial intelligence, 18-20 May

Crete. Springer Berlin Heidelberg, pp.432–442.

[71] Yannakakis, G.N. and Hallam, J., 2007. Feature selection for capturing the

experience of fun. Proceedings of the aiide07 workshop on optimizing player

satisfaction, 6-8 June 2007 Stanford. California: AAAI, pp.37–42.

[72] Yannakakis, G.N. and Hallam, J., 2007. Towards optimizing entertainment in

computer games. Applied artificial intelligence, 21(10), pp.933–971.

108

https://www.si.com/edge/2017/05/05/take-your-workout-outdoors-escape-sun-valley-mountain-biking-adventure
https://www.si.com/edge/2017/05/05/take-your-workout-outdoors-escape-sun-valley-mountain-biking-adventure
https://reflections.ubisoft.com/
https://reflections.ubisoft.com/

[73] Yannakakis, G.N., Hallam, J. and Lund, H.H., 2006. Capturing entertainment

through heart rate dynamics in the playware playground. In: R. Harper,

M. Rauterberg and M. Combetto, eds. Entertainment computing - icec 2006, 20-22

September 2006 Cambridge. Springer-Verlag, pp.314–317.

[74] Yannakakis, G.N., Hallam, J. and Lund, H.H., 2006. Comparative fun analysis in

the innovative playware game platform. Proceedings of the 1st world conference for

fun ’n games, 26-28 June 2006, Preston. Preston: University of Central Lancashire,

pp.64–70.

[75] Yannakakis, G.N., Lund, H.H. and Hallam, J., 2006. Modeling children’s

entertainment in the playware playground. In: S. Louis and G. Kendall, eds. 2006

ieee symposium on computational intelligence and games, 22-24 May 2006 Reno.

AAAI, pp.134–141.

[76] Yannakakis, G.N. and Togelius, J., 2011. Experience-driven procedural content

generation. Ieee transactions on affective computing, 2(3), pp.147–161.

[77] Yuan, J., Liu, Z. and Wu, Y., 2011. Discriminative video pattern search for efficient

action detection. Ieee transactions on pattern analysis and machine intelligence,

33(9), pp.1728–1743.

[78] Zhou, Z.H., 2018. A brief introduction to weakly supervised learning. National

science review, 5(1), pp.44–53.

109

110

Appendix A — User Study

Instructions

Azeem Khan Supervisor: Tom Haines
azeem.khan@ubisoft.com tsfh20@bath.ac.uk

FH QC Test Instructions

We are conducting a user study with the University of Bath to compare the performance of

a system which has been trained to evaluate game levels, with the feedback of a human.

By participating in this, you give consent for your feedback to be used for the purposes of

this study. You are free to quit at any time.

For each map:

Play several custom matches of Dominion with bots (any weather condition) until you feel

confident that you understand the layout of the map. Play as any hero you wish.

Open the map’s image in Paint 3D and, using the spray can, highlight in green (red) the

areas in which you experienced the most (least) enjoyment. If you felt neutral about a

certain area, just leave it uncoloured. In a separate text file, write a few lines explaining your

colouring (e.g. “the area around B was most enjoyable because…….”) Then save the image

and text file and send to azeem.khan@ubisoft.com. An example is shown below:

111

Appendix B — Summarised User

Feedback

Citadel Gate

Capture Point A

Most disputed point in terms of feedback. Ramp leading up to it feels like wasted

potential as it is far removed from other regions of map and rarely visited, but defenders

can use it to ambush. Pillars/columns result in an enclosed space in which it is difficult

to manoeuvre/dodge.

Capture Point B

All users except one marked this green wide open area with lots of action, and users

never felt overwhelmed/swarmed by minions unlike with some other maps. One user

even mentioned that there could have been more environmental dangers here to make

things more exciting. The one user who marked this red was vague in their feedback —

“clickfest with no real fun to it or. . . unreasonable amounts of space”.

Capture Point C

Consistently good across all users, mainly due to having plenty of space to fight e.g. circular

prop in the middle can be used to put distance between you and the enemy. Also many

entrances/exits. Two users complained about the ladders under this area however.

Other

Spawn near C was noted by two users to be visually impressive during rush into battle,

particularly the view of the citadel from here. Paths leading up to C and A were

112

deemed by some users to be bad due to narrowness. Areas connecting points are empty

and unused for combat — seen as boring by some, but others find this makes it easy to

quickly move between the points (one user even doing a lap) and circumvent the minions

in B if one does not wish to go through them to get from point to point. NOTE: User

9 marked many sections red which he considered to be the most fun, but they were not

visited very often (see: wasted potential in Capture Point A section).

User 1. User 2.

User 3. User 4.

User 5. User 6 (BMU).

Overwatch

Capture Point A

Many users liked this point due to its close connection to both bridges, large fighting

area and spread out ledges. However one user said the capture point itself might be too

113

User 7. User 8.

User 9. User 10 (WMU).

large. It also appears to be rarely visited by enemies which makes it easy to capture but

also quite boring, which is why some users marked it red.

Capture Point B

Minions are fought here, which is fun. But one can get aerial attacked by enemies from

the bridge above.

Capture Point C

Feedback mostly positive — multiple entrances and the ability to activate floor panels

which drop into spike pits makes for very intense and fun gameplay. However being

on the receiving end of these traps can be extremely frustrating, as well as the narrow

corridors leading up to this point.

Other

Bridges — mixed feedback — disagreement over whether bridges were wide enough

or not. Opportunity for jumping down and ambushing enemies but this can damage

your character and doesn’t seem worth trying as most of the time there wont be an

enemy directly underneath you. Also falling through holes can be annoying, but some

114

people appreciate that these environmental hazards make the game more interesting.

Underneath bridges — negative — minions end up being funnelled into two corridors

and enclosed space makes it difficult to wield certain weapons. Two users reported

erratic AI behaviour which dragged out the game.

User 1. User 2.

User 3. User 4.

User 5. User 6 (BMU).

Sanctuary Bridge

Capture Points A & C

Very similar — map in general is symmetric. Isolation and proximity to their respective

spawn points makes game more competitive i.e. teams compete solely for point B and

every second counts. Almost all users marked these green.

115

User 7. User 8.

User 9. User 10 (WMU).

Capture Point B

Mostly positive, as the narrow structure of whole map ensures that most enemies will be

encountered here, producing numerous intense fights. Also nearby hole/well can be used

to throw enemies down. However one user felt it was too compact and an easy place to

get killed. Walkways surrounding B can be fun if you can activate traps successfully or

knock off opponents, but they are not often visited and hence can be boring or frustrating

if you are knocked off.

Other

Structure of the whole map “compresses fun” so apart from in spawn points, there

weren’t many uneventful moments/areas.

116

User 1. User 2.

User 3. User 4.

User 5. User 6 (BMU).

User 7. User 8.

User 9. User 10 (WMU).

117

Riverfort

Capture Point A

Majority opinion — good — elevated position makes for good vantage point from which

to observe battlefield. Very fun and easy to defend due to opportunities for 1v1 and

throwing/kicking players off. However these same things make it very difficult for

attackers due to narrow passages either side of A serving as bottlenecks making it hard

to manoeuvre. Also players can get stuck on/kicked off ladders.

Capture Point B

Players generally enjoyed fighting on an open battlefield where they can easily kill

minions and use them to farm up rank, but admitted it can be annoying when harassed/swarmed

by minions, which also provide cover for enemies to attack. Ladders leading from here

to A are bad (mentioned above).

Capture Point C

Mixed opinions — geometry of C provides interesting and challenging combat situations.

Area is secluded from other points. Upper area generally good, lower area generally bad

due to enclosed space and being prone to ambush. Similar to A, bottlenecks make

defending easy and attacking hard.

Other

Spawn points/outskirts of map — mostly neutral to bad. Most players see these as

boring or just sprint zones. Teammates not waiting for each other can create sense of

discord. However opening experience of rushing into battle with teammates is exciting.

User 1. User 2.

118

User 3. User 4.

User 5. User 6 (BMU).

User 7. User 8.

User 9. User 10 (WMU).

119

Highfort

Capture Point A

Almost unanimously positive. Epic feeling from having to climb up to reach it. Good

view of battlefield. Ladder provides quick escape but User 4 complained that one can get

magnetised on to the ladder (this person had a problem with ladders in general). Circular

shape and middle pillar give room to fight and obstacle to play with, respectively. Good

fights here.

Capture Point B

Mixed feedback. Open area with lots of minions but tends to get slightly more negative

feedback overall compared to minion zones of other maps. Low amount of environmental

hazards except for a fire pit which provides fun. Can get easily swarmed/interrupted by

minions, making it easier to die at the hands of enemy players, who use cover points to

ambush. Cart acts as a blocker into which the player can be pushed, breaking the flow

of combat.

Capture Point C

Almost unanimously positive. Plenty of space to fight. Cliffs and bridges provide

interesting gameplay with opportunities to throw people off. Risk of falling/getting

knocked off bridges was exciting for most, but an issue for User 3. Risky nature of these

bridges make it easier to defend C, and attackers feel like they are working towards the

point. View from this area also pleasing.

Other

Map is very large — results in underused areas between spawn points and control zones,

however these regions have good visibility.

User 1. User 2.

120

User 3. User 4.

User 5. User 6 (BMU).

User 7. User 8.

User 9. User 10 (WMU).

The Shard

Capture Point A

Majority of users gave positive feedback for the point itself, and negative feedback for

the corridors leading up to it. Elevation makes for good vantage point, spike wall is fun

121

to push enemies into, and contains separate spaces for fair fights.

Capture Point B

Fighting pit with many environmental hazards and possible ambushes from enemies

jumping/climbing down from above — chaotic and intense gameplay. Most users gave

positive feedback for these features, but User 8 felt it was too compact and marked it

red. One user mentioned the insta-death pit may be excessive.

Capture Point C

This is where the minions fight, unlike in the other maps. User 8 marked this red because

they felt it was too compact and impeded player movement, but User 10 marked it red

because they felt it was large and boring, preferring the more “interior” points. Most

users liked this point, mainly because they either like killing minions or because one can

avoid the minions and easily move to the other points via the two large areas on either

side of the point. Also there is good line of sight between this point and the other points.

Other

Routes/corridors between points can feel cramped/awkward.

User 1. User 2.

User 3. User 4.

122

User 5. User 6 (BMU).

User 7. User 8.

User 9. User 10 (WMU).

123

Appendix C — Genetic

Algorithm Implementation

1. A population of random candidate solutions is initialised:

{G1, G2, G3, . . . GP },

where P is the size of the population.

2. The cost for each candidate is computed using equation 2.13 and the two with the

lowest values are chosen e.g:

GI = {1, 0, 0, 2, 1, 3, 1, 0} GII = {2, 2, 1, 1, 0, 1, 1, 0}.

3. Crossover — each of these solutions are split in half, swapped and recombined:

GI = {1, 0, 0, 2, 0, 1, 1, 0} GII = {2, 2, 1, 1, 1, 3, 1, 0}.

4. Mutation — with a certain probability, one of the elements of the resulting “offspring”

are changed:

GI = {1, 0, 0, 2, 0, 1, 1, 1} GII = {2, 2, 1, 1, 1, 3, 1, 0}.

5. These two new candidates are added to the population and the two which give the

highest cost are deleted.

6. Steps 2 to 5 are repeated for a set number of generations.

124

Appendix D — Negative

Dirichlet Loss

The expression for the log-likelihood of the Dirichlet distribution is:

NLL = − log

(
1

B(c)

5∏
i

θci−1i

)
,

where c = {c1, c2, c3, c4, c5} are the counts outputted by the neural network, θ =

{θ1, θ2, θ3, θ4, θ5} are the parameters to be trained and

B(c) =
Γ(c1)Γ(c2)Γ(c3)Γ(c4)Γ(c5)

Γ(c1 + c2 + c3 + c4 + c5)

is the Beta function. We then substitute this into the loss and include a prior via

θ −→ θ + α where α = {0.2, 0.2, 0.2, 0.2, 0.2}. This is equivalent to observing one of

each star rating at the start before updating as more data is observed. After expansion,

the loss now becomes

NLL = log Γ(c1) + log Γ(c2) + log Γ(c3) + log Γ(c4) + log Γ(c5)− log Γ(c1 + c2 + c3 + c4 + c5)

− (c1 − 1) log(θ1 + α1)− (c2 − 1) log(θ2 + α2)− (c3 − 1) log(θ3 + α3)

− (c4 − 1) log(θ4 + α4)− (c5 − 1) log(θ5 + α5),

where log Γ is the log-Gamma function.

125

Appendix E — Preliminary Map

Evaluation Results by Geometry

Capture Metric

Citadel

Gate
Overwatch

Sanctuary

Bridge
Riverfort Highfort

The

Shard
Mean

User 1 50 45.6 48.6 41.4 47.1 65.4 49.7

User 2 42.9 48.5 39.5 31.9 38.7 43.6 40.9

User 3 46.8 55.2 50.5 54.8 43.9 51.7 50.5

User 4 52.2 57.2 53.1 59.5 51.6 68.0 56.9

User 5 62.0 61.2 38.8 60.6 52.1 50.2 54.2

User 6 58.3 64.5 55.6 52.7 70.6 66.6 61.4

User 7 43.9 45.8 37.9 30.8 48.0 37.7 40.7

User 8 53.7 60.3 54.6 40.9 70.9 53.2 55.6

User 9 40.5 37.8 37.5 44.9 43.0 41.1 40.8

User 10 50.6 40.7 40.4 48.7 44.8 40.4 44.3

Mean 50.1 51.7 45.7 46.6 51.1 51.8

Table 1: Map Proximity.

126

Citadel

Gate
Overwatch

Sanctuary

Bridge
Riverfort Highfort

The

Shard
Mean

User 1 48.3 47.1 51.0 42.8 44.8 60.5 49.1

User 2 40.7 44.2 43.3 62.4 31.3 40.8 43.8

User 3 46.6 49.1 46.7 48.2 41.1 58.7 48.4

User 4 55.2 61.8 42.6 52.0 55.3 66.6 55.6

User 5 60.5 64.5 34.1 64.0 46.0 51.1 53.4

User 6 56.7 59.9 57.1 54.5 75.0 66.4 61.6

User 7 42.5 55.5 43.3 62.9 45.6 42.4 48.7

User 8 56.8 57.7 48.2 49.9 68.6 50.8 55.3

User 9 36.9 49.6 30.7 49.7 41.2 42.2 41.7

User 10 48.9 30.8 48.4 47.4 47.9 33.7 42.9

Mean 49.3 52.0 44.5 53.4 49.7 51.3

Table 2: Nested Spheres.

Citadel

Gate
Overwatch

Sanctuary

Bridge
Riverfort Highfort

The

Shard
Mean

User 1 58.7 51.3 53.1 40.8 47.6 60.5 52.0

User 2 32.1 50.4 41.1 60.0 47.5 41.5 45.4

User 3 51.2 52.0 54.9 47.6 52.4 48.6 52.8

User 4 62.5 70.9 56.7 53.9 53.4 65.6 60.5

User 5 57.9 62.9 41.7 60.5 54.3 51.0 54.7

User 6 57.0 60.1 60.4 56.4 68.8 65.8 61.4

User 7 54.9 52.1 40.3 63.0 - 40.5 50.2

User 8 58 57.7 56.1 51.4 68.9 46.5 56.4

User 9 46.4 45.6 41.6 51.5 44.6 45.2 45.8

User 10 25 34.6 42.8 37.3 31.1 31.0 33.6

Mean 50.4 53.8 48.9 52.2 52.1 50.6

Table 3: Intersection Distance.

127

Citadel

Gate
Overwatch

Sanctuary

Bridge
Riverfort Highfort

The

Shard
Mean

User 1 50.1 43.0 49.8 44.3 45.6 63.4 49.4

User 2 34.3 51.9 42.8 32.6 43.2 39.0 40.6

User 3 36.5 59.5 56.3 48.8 46.2 58.5 51.0

User 4 49.6 49.7 56.4 54.3 46.3 66.1 53.7

User 5 50.8 60.3 39.3 57.7 55.1 50.5 52.3

User 6 52.6 65.3 58.5 47.4 69.3 65.0 59.7

User 7 38.1 47.5 40.5 35.4 - 40.3 40.4

User 8 48.1 64.2 58.4 41.5 74.3 41.0 54.6

User 9 41.3 40.5 43.3 44.5 42.8 44.0 42.7

User 10 52.0 44.0 43.2 48.0 39.5 28 42.5

Mean 45.3 52.6 48.9 45.5 51.4 49.6

Table 4: Log-distance.

Note: Some entries have no values as that particular user’s map was not available at the

time these values were computed.

128

Appendix F — Full Results

129

Figure .13: Heat Map Accuracy Results (method 1).

(t, t', t'', κ₁, κ₂) (2, 20, 60, 20, 6) (2, 20, 50, 22, 7) (4, 10, 50, 22, 4) (6, 10, 40, 12, 7) (6, 10, 40, 19, 6) (6, 16, 50, 12, 3) (4, 20, 40, 24, 5) (6, 10, 60, 20, 10) (6, 10, 40, 12, 3)

User 1
Citadel Gate 55.42680034 56.01291875 55.18873834 55.26633184 55.12244152 55.95727602 55.75135223 54.70622369 56.29879666
Overwatch 42.71783726 42.59956987 43.98915892 43.29935269 44.28291858 43.8285241 41.41719112 43.05172231 43.74793028
Sanctuary Bridge 51.52747143 53.03269288 51.45744787 50.18268922 50.2935542 51.86601172 50.90444128 50.50121884 51.48640357
Riverfort 37.44669781 41.38919032 40.33176282 40.59906935 42.62831332 40.61575724 40.80136986 39.79560999 40.72851518
Highfort 48.86906517 51.18608241 51.98232943 50.71091066 50.9883761 51.49619273 51.19321854 48.7056585 50.57240259
Shard 68.06422885 67.02412067 65.87857244 68.14078675 67.333833 66.90703389 67.28544181 68.8499622 66.38143199

User 2
Citadel Gate 36.98682127 37.10787269 37.90862809 37.8709523 37.79725659 37.80823145 36.70009448 37.14415278 35.33512137
Overwatch 46.58766082 46.31711302 47.64128942 46.07782329 45.0351062 47.13093433 45.38449857 47.15680785 47.21235754
Sanctuary Bridge 41.64210564 41.18007911 41.43128206 42.41523191 42.49505668 40.97144754 42.23489881 42.29638155 41.63075313
Riverfort 47.21014893 42.55975241 44.54360484 42.67849388 43.42133016 46.32383337 43.58688714 46.0199834 43.74679715
Highfort 41.03692229 41.25648485 38.89771339 38.02699266 37.96946099 39.41921491 38.94481526 40.91802908 37.73433606
Shard 48.71622114 46.73308674 47.92613546 50.36292172 47.64882758 48.64826524 49.54493283 48.12022753 48.9793851

User 3
Citadel Gate 47.46569875 46.88717843 47.99258837 48.04922348 48.68487636 46.7744579 47.70668069 46.15922432 47.9891516
Overwatch 56.24067528 55.6820954 57.28321343 56.1198069 54.93754103 57.12066015 55.19760116 56.12361204 57.44137802
Sanctuary Bridge 53.40170909 56.46413809 53.90079027 54.55136558 54.37130611 54.8843553 54.40238653 54.0299227 55.45254566
Riverfort 45.95190086 46.60824023 45.80271312 46.48996485 46.98710469 47.66994092 46.53010343 46.13095526 46.26691003
Highfort 46.30852336 47.40497133 46.75811012 47.09521789 46.82609944 47.41180483 47.8239863 47.27594217 45.19853103
Shard 48.40814415 47.39795487 49.45179029 47.71796118 45.79669262 48.44716371 48.03435174 48.19535008 46.66018583

User 4
Citadel Gate 60.16250188 59.2801761 59.64086577 56.9899242 58.98689174 58.23078555 59.37577506 59.10343415 58.29801599
Overwatch 50.10825609 49.06856592 51.63865149 47.22831334 55.0828801 48.84089365 46.07782259 52.27857632 49.77218639
Sanctuary Bridge 55.04026244 58.79472551 55.70161307 56.28886948 53.45731348 56.39159502 55.99423527 53.66588431 57.94592586
Riverfort 49.6759449 51.74471357 50.8416034 52.44407151 51.91130353 51.63361 52.20774993 50.16728616 51.99913353
Highfort 55.20811812 60.15385628 61.59494904 65.10508372 63.06212795 61.18050387 62.03114186 56.02979717 60.1820709
Shard 68.92816526 68.09987633 68.5467411 67.59271031 67.33503421 68.07782563 68.43678819 68.15311496 67.42451842

User 5
Citadel Gate 54.30631418 55.57365078 55.55253287 55.79450457 54.35691928 54.96039489 55.60159197 53.41189328 54.44320978
Overwatch 58.66798945 59.3978794 59.71775835 59.02762946 55.76977935 59.15315878 59.45868748 59.65440146 59.70190492
Sanctuary Bridge 40.04712236 42.07925446 40.63850976 40.19884872 39.32024177 40.67312587 40.48379911 40.15086406 41.55207356
Riverfort 58.68307201 58.54007481 58.31907417 58.31026813 58.34186576 59.36834568 59.17021771 59.24532262 58.39818803
Highfort 53.18968691 51.97202436 50.60528484 52.32782036 52.59518001 50.98477309 52.28644658 52.78158195 50.7909345
Shard 52.20504269 51.13522818 51.89711368 51.25329748 49.52323385 51.71394046 51.61957439 51.60626771 50.54249607

User 6
Citadel Gate 55.60188616 57.013267 57.25028647 57.59098896 56.36240477 56.11587905 57.05641066 55.60080968 56.2367208
Overwatch 62.78371846 62.88483123 62.13270515 63.58941633 59.98323186 63.82394785 63.65527611 63.51622836 64.17952996
Sanctuary Bridge 57.5651512 58.85615108 58.13481102 58.82039065 57.91708276 59.82494545 58.31060128 57.59425832 59.13552211
Riverfort 50.13892538 50.18682385 50.54306398 51.03656788 50.50856331 51.17247163 50.67363329 50.08153145 49.78777071
Highfort 68.23816525 67.78790014 69.71566082 66.06688043 67.23832637 68.40526866 67.77032573 68.56529017 66.14946279
Shard 64.84543832 64.91899088 65.13263407 65.29763441 64.19424263 64.7518226 66.00489548 65.44175522 64.36396711

User 7
Citadel Gate 48.90796385 50.00703665 49.27189416 50.05316503 48.73690669 48.37511169 50.70653925 47.71392947 51.84935444
Overwatch 46.21836487 48.11650689 48.34575207 46.16213795 46.6620457 47.32652313 47.41646012 47.34528193 47.37952631
Sanctuary Bridge 40.07024857 39.6617841 40.11530124 40.39803285 39.96056221 39.9247705 41.00192407 40.9573452 40.46466276
Riverfort 45.55115582 41.55175496 43.70416504 41.02689529 43.67712391 45.71667069 41.92435583 43.30631743 41.62925701
Highfort 46.30430543 45.09109886 44.67746635 42.84391293 43.53869363 44.28928356 43.81662151 46.15895038 43.46629211
Shard 37.26056583 41.48850835 37.57346818 41.07689761 40.9272519 40.68163545 40.95317617 37.80143054 40.78035389

User 8
Citadel Gate 53.25751919 54.3340931 54.26432339 53.27815101 52.70702992 52.75904051 53.77050192 52.73689008 52.72456136
Overwatch 60.70866492 61.53333144 62.37758513 60.80443607 59.81499341 62.05398483 61.36995199 61.24904587 61.85319247
Sanctuary Bridge 54.52970974 55.68008838 55.1077754 55.0356729 55.33292856 55.18493458 54.65375031 53.70938188 54.51905284
Riverfort 41.11082411 41.13440099 42.52418496 41.1979352 42.07700192 42.59522037 41.80085033 41.0921398 41.65666409
Highfort 67.71262454 63.61049672 63.30701591 58.8587981 61.06177032 63.19178971 61.37407544 66.76914942 61.91792861
Shard 62.88917486 60.69198394 63.56774393 63.81061616 61.63497711 61.73857261 62.4051018 59.28604076 63.86029765

User 9
Citadel Gate 43.86633511 43.45357919 42.30338385 42.56627639 44.05046579 44.05000726 43.32843892 44.15371809 43.41138807
Overwatch 43.81369576 45.63212636 44.53132393 43.63375878 45.4102172 44.38174162 44.29499863 43.93916888 43.31207
Sanctuary Bridge 40.10751149 42.07222858 39.96305164 40.96775706 37.76607371 40.65313228 39.46160887 39.38929416 40.72598442
Riverfort 45.00650618 43.53974114 45.02873005 45.15511903 44.87838177 43.93925054 45.1770914 44.09937926 43.77584432
Highfort 44.16092981 45.17579639 43.9987397 43.81195984 43.08722224 44.73665704 43.78391402 43.96075945 43.39699865
Shard 38.38295175 37.06509619 38.69136606 37.20333132 36.54287172 38.33913848 38.18630473 39.12041125 37.89962492

User 10
Citadel Gate 32.16654365 31.15580312 32.31408159 31.45883167 31.12195066 32.43131533 30.18790118 32.71421514 30.81612308
Overwatch 40.67891452 39.70622871 41.43470201 40.2731495 40.64551473 41.05960652 39.95356115 39.8061101 40.86113308
Sanctuary Bridge 44.60711729 45.28179952 42.90562857 45.44601029 45.69644136 45.62681395 46.36452773 44.63035224 45.6481976
Riverfort 46.68698593 49.58058897 48.51753691 47.99263373 49.80427176 48.67864113 49.23087401 47.84520166 48.42325853
Highfort 38.64532131 40.14739887 41.14019567 36.52325028 38.4913845 40.3013977 38.0226065 37.5757466 38.29411679
Shard 49.80098594 48.32785268 50.12721856 51.93769311 51.00748694 50.08896572 51.564154 47.56176294 51.09209324

130

(t, t', t'', κ₁, κ₂) (2, 20, 50, 16, 7) (2, 20, 50, 10, 3) (2, 20, 50, 16, 6) (2, 20, 50, 24, 5) (2, 20, 50, 22, 5) (2, 20, 50, 22, 8) (2, 20, 50, 22, 9) (2, 20, 50, 23, 7) (2, 20, 50, 21, 7) Mean

User 1
Citadel Gate 57.05986242 56.16325843 57.11946855 57.91690017 55.3959998 55.58018826 54.62874807 56.22327168 57.03205464 55.93614619
Overwatch 42.07769897 43.61402867 43.98067806 42.81727819 43.43017241 43.57559748 43.30682805 43.77824929 42.91221446 43.24594171
Sanctuary Bridge 50.38212228 51.77525693 52.0558554 52.10785406 52.12013034 52.06593446 52.69378619 52.77217388 52.46254153 51.64931034
Riverfort 40.04904816 41.59187537 38.52671905 40.13527582 39.65169695 41.58047176 41.23001483 40.11731811 41.79240955 40.50061753
Highfort 50.2517357 50.31850804 51.11173025 50.13947077 51.18542586 50.77410606 50.63143048 52.13556932 50.25625441 50.69491483
Shard 66.50586871 67.21131421 65.84748871 66.84726248 66.19548928 67.04660342 66.33540414 67.35979746 65.50130013 66.92866334

User 2
Citadel Gate 35.48496102 36.00025325 35.71615918 36.77763843 35.86091742 36.01120797 37.65429493 38.6298417 37.14148327 36.88532712
Overwatch 46.34627176 47.53046372 45.01332767 47.32569853 46.27037757 45.93020003 47.43594418 47.54968421 45.77580698 46.54007587
Sanctuary Bridge 40.42603092 41.95613451 42.51232212 41.73597086 42.10466943 41.84924605 41.98220158 41.13817108 42.46692826 41.8038284
Riverfort 46.01401531 43.52642833 47.18389559 45.69478899 44.10519696 45.34195085 44.24648756 44.30824062 45.35643613 44.77045954
Highfort 41.4535983 40.55792284 38.52951843 37.75372359 40.3278263 39.71730339 41.45195345 39.57629636 39.42631767 39.61102388
Shard 48.42278078 49.80731776 49.23181522 50.05604175 49.02320075 51.13108202 49.04163451 49.34901897 49.23546231 48.99879763

User 3
Citadel Gate 47.79509264 49.03777041 47.61471374 48.78546398 46.89125216 46.80397152 46.04157981 47.90503286 47.85806526 47.58011235
Overwatch 56.49096995 56.78388312 52.86092623 56.49332861 56.41081024 55.94111763 57.01005027 57.09620245 55.02401382 56.1254381
Sanctuary Bridge 53.79068664 56.18203268 55.60019355 54.38864767 55.65886076 55.15126142 54.00139555 54.31386743 56.98548625 54.86283063
Riverfort 46.83743581 47.54260939 44.88547864 47.06633611 46.60590505 46.4283886 47.30947416 46.93608349 47.01349742 46.61461345
Highfort 47.10327289 46.80179849 45.510319 45.73374599 47.12815342 47.00438074 47.20211127 48.06206527 46.58347209 46.84625031
Shard 48.07868327 48.34816022 48.66424174 47.50964023 49.55861037 48.1829424 48.49165349 47.0870408 47.94369017 47.99856984

User 4
Citadel Gate 59.26709868 58.10812593 60.5391743 58.51234387 57.30071734 58.89668813 57.87167427 59.83185111 58.58945271 58.8325276
Overwatch 45.98495648 51.11218183 58.84386493 49.22643195 49.00424654 47.47793495 50.38760662 49.78407604 49.64142465 50.08660388
Sanctuary Bridge 56.36990254 57.4924393 56.72195714 56.87993731 56.29653367 56.14553429 55.35488862 56.29264411 58.02975458 56.27022311
Riverfort 50.03324255 51.65894779 51.29544427 50.19891883 51.94784369 51.50137828 50.88946563 51.95516393 50.16348511 51.2371837
Highfort 58.55569435 58.18302073 58.32710493 59.90819469 61.46267397 61.26088365 59.26348646 61.09709919 60.48353447 60.17163007
Shard 67.19603247 69.14434772 67.8085786 68.95123101 68.10439104 69.81335269 69.0159003 68.66623743 68.67355949 68.33157806

User 5
Citadel Gate 55.41437144 54.75730037 54.89722881 55.78938392 53.76091957 53.88205112 54.75306603 54.72968189 54.22934866 54.78968686
Overwatch 59.37702697 59.74765945 56.37275358 59.42365576 59.95404166 59.11708026 59.13498474 60.26948255 58.45693466 59.02237824
Sanctuary Bridge 40.31827446 42.25623813 41.75536878 41.02341141 41.71728496 40.40680731 39.83822898 40.64385605 41.53631816 40.81331266
Riverfort 58.29540661 58.20543075 57.80786402 58.85623881 58.47457562 58.76902024 58.45828472 58.50920547 58.23828698 58.55504123
Highfort 53.78125894 51.32925652 51.71392752 51.58173632 51.6589889 50.94826073 52.23988144 52.39488382 50.37164235 51.86408718
Shard 51.62510323 51.15113465 50.96925362 50.92910994 52.31243225 52.98538897 51.97645203 52.03338669 51.0648812 51.47462984

User 6
Citadel Gate 56.33017825 58.50809667 55.27992088 57.09814179 55.53003734 56.18603518 56.57852931 56.39298281 56.32526175 56.5032132
Overwatch 63.50001481 63.04522016 59.45256934 63.13584007 62.06925983 61.71810163 62.49900033 63.14326809 61.29386649 62.57811256
Sanctuary Bridge 57.02126888 59.45205409 59.32019351 58.04244262 58.89020654 59.14339568 59.56929251 59.05713345 59.70843567 58.68685205
Riverfort 50.04867153 50.82496372 50.45816392 50.08074839 51.65691594 51.32834528 50.12886907 50.73655607 50.53885306 50.55174658
Highfort 67.93666249 68.47024076 67.17117008 66.92555988 65.75261337 66.43783998 66.8325187 69.44529549 65.53864989 67.46932395
Shard 63.5027404 65.61251067 64.38021927 64.92507958 64.26104629 65.68343055 64.4762163 65.28252966 64.804554 64.88220597

User 7
Citadel Gate 49.90411306 51.36822594 49.7518041 51.56631289 49.75924267 50.69643516 49.19581203 48.4658349 51.09626423 49.85699701
Overwatch 47.45315059 48.96416033 45.43224946 45.92348533 48.07391412 48.73000405 47.26426713 47.22283381 48.39307151 47.35720752
Sanctuary Bridge 39.90594342 40.93499109 39.3767704 40.09466462 40.32481507 39.72016819 40.48463966 40.47758611 39.7970476 40.20395876
Riverfort 45.23828694 43.18186802 45.02409739 44.23826738 43.63262699 45.13060172 43.10114583 43.24444226 45.54242678 43.69008107
Highfort 44.99119061 44.86599822 44.90300716 43.891728 44.04416704 43.24261084 44.93710883 45.23941897 44.53996818 44.49121237
Shard 40.10469413 40.06718651 40.33184944 37.98222601 38.45167909 38.65580227 38.34216313 40.0548133 39.38739942 39.55117229

User 8
Citadel Gate 54.31004737 54.04113778 53.82098708 53.88668726 53.91917903 53.64846087 53.83922337 54.64708369 52.41478254 53.57553886
Overwatch 62.49272114 60.8965038 59.42665068 60.71963035 61.09671391 61.81075711 61.58251819 62.26014121 60.06478658 61.22864495
Sanctuary Bridge 54.61900413 56.9044745 55.63166067 54.36523127 56.02781557 56.11914601 54.41264373 55.39779339 56.87093003 55.22788855
Riverfort 40.37536244 43.39600531 42.32009494 40.22746342 42.85543869 41.7916437 40.93469329 41.2710446 41.05841004 41.6344099
Highfort 65.45525289 65.63853857 63.71524001 62.51025404 61.49772551 61.61824775 63.34020968 64.37077629 60.63651121 63.14368915
Shard 63.6964454 62.43726526 63.80139097 64.29061962 64.65272312 63.85018483 64.01443585 63.95474675 63.25915196 62.99119292

User 9
Citadel Gate 44.31029668 44.15934085 44.4046208 43.4722917 43.5868657 43.07611605 43.11783267 42.69471059 45.00763206 43.61184999
Overwatch 44.85659968 45.08705749 42.03601695 43.74303623 44.8798576 46.42431333 43.86084897 44.43018936 45.63537205 44.43902182
Sanctuary Bridge 40.51754258 41.5399234 41.05800176 41.83058154 41.22977052 40.09268523 39.07777909 41.33711213 41.94220261 40.54068006
Riverfort 44.7782099 44.66799264 44.94566134 44.2771203 45.98680406 44.27303694 44.45259271 44.79545141 44.52408565 44.62783326
Highfort 44.65743524 44.52227282 43.90463861 42.71735733 44.30120045 43.74548489 44.76895716 45.25408887 43.92150706 44.10588442
Shard 37.36649621 37.85825831 37.78830697 38.30452977 38.0984948 39.12403935 38.01290882 37.81475824 38.02160311 37.99002733

User 10
Citadel Gate 32.69468677 30.90081003 31.25642992 32.52693435 31.29813749 30.33793763 33.00324981 33.39426557 32.98227786 31.82008305
Overwatch 41.04653388 40.65337917 37.76001519 40.98015272 40.49935586 39.13304394 40.27032715 41.21180612 39.27919213 40.29181814
Sanctuary Bridge 43.37415836 43.17660762 46.22577521 45.43538346 44.65462367 45.32648253 47.32250895 45.62514159 45.37814791 45.15142877
Riverfort 49.02145087 48.44746338 46.97332512 49.32968343 47.28341271 49.22865638 48.87308024 47.73021561 50.51544179 48.56459568
Highfort 39.70939036 39.89078219 39.85941674 39.18278707 37.24890941 37.35955762 38.99801577 41.28699289 37.68523771 38.90902822
Shard 50.36049819 50.95159164 50.72389964 51.46597853 50.49315911 53.10563163 51.93382871 51.65432393 50.75882077 50.71977474

131

Figure .14: Heat Map Accuracy Results (method 2).

(t, t', t'', κ₁, κ₂) (2, 20, 60, 20, 6) (2, 20, 50, 22, 7) (4, 10, 50, 22, 4) (6, 10, 40, 12, 7) (6, 10, 40, 19, 6) (6, 16, 50, 12, 3) (4, 20, 40, 24, 5) (6, 10, 60, 20, 10) (6, 10, 40, 12, 3)

User 1
Citadel Gate 59.61290924 59.59146789 60.25832805 58.91597572 58.65664841 57.36731557 58.67477135 58.55675112 59.32670291
Overwatch 50.66309486 51.23781486 50.04052114 48.17223236 49.05188605 50.11641779 47.98418293 49.52726375 46.88428607
Sanctuary Bridge 50.73128472 52.98408728 51.85924912 53.52226479 54.14733852 53.012821 54.08911125 50.85416535 54.114018
Riverfort 38.55519567 39.9209262 40.57976579 40.21633171 38.37696711 39.88397757 38.73677718 39.21884529 38.01256271
Highfort 47.5635899 48.60464889 49.27432653 49.68493429 49.41948804 49.36611617 49.77492306 47.85895091 50.03284165
Shard 60.90016935 60.84803083 60.35747982 60.84751715 60.30723772 61.13231976 60.84004255 61.22033916 60.47533838

User 2
Citadel Gate 31.2302042 31.49650109 31.37807207 31.57988577 31.42424438 32.01388814 31.55714821 31.13652732 31.37614894
Overwatch 49.497472 48.73799314 47.30029714 45.68708714 46.08850633 47.93993287 46.16730438 49.24180807 45.82046582
Sanctuary Bridge 39.87827931 40.86646368 40.5246169 41.4949854 41.0337156 41.53463535 41.86560353 39.73484608 41.70289349
Riverfort 64.78911149 60.51522013 60.04957888 59.53604695 59.18441766 57.69920288 59.35660762 63.18091999 59.12559856
Highfort 47.48261895 42.75822043 42.66806478 40.440077 40.05359596 43.56100797 39.36908228 45.693545 38.79297437
Shard 39.48136778 41.02094717 40.8308995 42.2907339 42.6103862 41.81404409 42.27686917 39.38124725 41.9817723

User 3
Citadel Gate 52.89380014 53.22105293 54.05928617 48.8669729 49.86095352 51.15351127 47.87547171 50.18587036 48.33879983
Overwatch 51.46629486 50.728064 49.79306057 49.76805592 49.73707731 49.88922875 50.02853473 52.22663107 50.67605312
Sanctuary Bridge 51.98260097 54.91637669 54.09408161 54.30774131 54.23922251 54.50186621 54.52337065 52.10236427 54.4750478
Riverfort 47.25751415 47.76315271 47.34720479 46.28977614 45.91012685 45.96918468 45.79320269 45.3759508 45.96140125
Highfort 52.3896477 50.5708893 50.48558198 49.94634917 49.30682759 51.04444125 49.32745158 51.56186992 49.08602684
Shard 59.00237752 58.73911556 58.66276252 57.7943565 57.62283042 56.74175478 57.80556842 57.31138527 57.26159044

User 4
Citadel Gate 63.57544422 63.70379129 64.1176694 59.16953197 61.16229406 62.46437849 59.23816122 61.38567543 59.38756244
Overwatch 70.297216 69.02083657 67.02946743 64.95642991 65.46339065 67.8465942 65.45129394 69.06222572 63.49816004
Sanctuary Bridge 55.12852625 55.87523561 56.22687606 56.35416993 56.82179867 55.83642099 55.67734003 55.32455528 55.9945628
Riverfort 53.81339897 54.32797117 53.58130652 53.63171764 53.28411591 53.69646704 52.7547341 53.07805086 52.65838189
Highfort 53.35792408 59.47078103 59.32895529 62.36705909 61.85862451 59.6836946 62.32209168 53.67181213 62.0948748
Shard 65.37525548 65.19307934 65.35267055 65.95999917 65.718176 66.33274521 66.33034266 64.61564348 65.64296231

User 5
Citadel Gate 59.27261392 59.87019102 60.54053396 57.10573802 57.49095261 58.03621093 56.40409489 58.27623644 56.52206109
Overwatch 62.880768 62.12392229 61.54673371 61.13208168 61.50399938 61.72009097 61.4087067 61.98537156 60.26557564
Sanctuary Bridge 40.06680501 41.31140351 41.28604181 42.26361516 42.49198435 41.24961658 42.19460829 40.65587081 42.23881977
Riverfort 61.07047994 60.47570292 60.35717274 59.41658437 58.94140869 59.37658761 58.49923468 60.7667182 58.36513372
Highfort 54.34195375 53.841961 53.49923063 53.44225602 53.34970506 53.5689936 53.02325876 54.72506645 53.13594533
Shard 50.26334537 50.91186506 50.39409372 50.96741955 51.22075667 50.76959269 51.34033244 50.31482368 51.00092181

User 6
Citadel Gate 58.86939915 60.06925439 60.15185229 56.41297665 56.35520234 59.19318349 55.21698465 58.04051067 55.06092805
Overwatch 59.35605029 59.97950171 59.846656 59.56814826 59.60939196 59.71035395 59.88251482 59.83230325 59.89061736
Sanctuary Bridge 57.62985383 61.5577425 59.81883263 60.8080398 60.70971293 60.60570149 61.38755022 56.89449121 60.80561119
Riverfort 58.28329806 56.5108884 55.52545643 54.39729209 55.41955078 54.82606993 54.43064326 55.25567509 54.37319296
Highfort 68.76308365 62.22992811 62.38505451 60.40807793 60.35517634 61.88092748 60.02959408 68.61324164 60.26119491
Shard 65.41584844 65.77080744 65.64953597 65.25830361 65.13505562 65.66009719 66.01065299 64.61967602 65.20564767

User 7
Citadel Gate 54.0107995 56.00654993 56.50586376 54.0492608 54.48701834 53.58085472 54.14738418 53.71953549 54.45974336
Overwatch 52.24290743 54.22442057 54.58565486 56.60841779 56.50144924 54.30695099 56.35282124 52.12147089 54.4667779
Sanctuary Bridge 38.46022238 40.21770335 39.90945256 40.88778534 40.56602109 39.7540179 41.06017249 38.34103905 41.62941885
Riverfort 66.72555255 62.07806962 62.98418418 62.9134683 62.03334433 59.67162672 62.28138308 64.45254354 61.81011827
Highfort 49.14709332 48.54254333 48.66269505 47.28022287 47.51161821 48.34842228 46.86653889 48.56810788 47.08761225
Shard 39.181417 40.73442727 40.13691214 39.44419279 39.96214162 40.23031137 39.77224134 40.1694497 39.51907235

User 8
Citadel Gate 57.23009671 57.16128662 57.65425118 56.32324086 56.31309346 56.21266487 56.44527047 56.68967741 55.8606044
Overwatch 57.10999771 56.655872 56.13359543 57.5969207 57.42839594 55.97014843 57.66536382 57.78000658 57.84171333
Sanctuary Bridge 54.4366612 56.29657822 55.60018486 55.38501538 56.38792528 55.20229622 56.50957821 54.14805484 56.61161204
Riverfort 51.2988826 52.08462629 51.81133246 50.66224019 50.98072881 49.89752571 50.90263058 49.7215131 49.87387593
Highfort 68.93817442 57.50800339 58.33343494 54.60477475 54.67235422 57.68428915 54.08695822 69.69334992 53.71934269
Shard 42.68919607 46.3022699 45.46916098 47.44459321 48.00853355 47.50090304 47.93851801 43.7722054 47.49748274

User 9
Citadel Gate 47.49810633 47.34371719 47.47421413 45.90656643 45.57666096 45.54328937 46.00727168 46.14677144 46.55096015
Overwatch 46.14356114 48.24980114 49.62018743 52.29849464 51.98302939 48.21845816 52.0058514 46.68896284 51.2616763
Sanctuary Bridge 40.85976566 40.97952008 40.75232667 40.96872012 41.41496165 40.99624215 40.77574594 40.8179355 41.37129704
Riverfort 52.90553778 51.61311727 51.48353688 51.75911206 51.22342274 50.85834891 50.84319708 51.93793444 50.75101316
Highfort 44.56831832 43.64008623 43.71545832 43.00705666 42.75070839 44.30806176 42.78164855 44.34284878 42.57414499
Shard 43.82302937 45.26622342 44.84614903 44.63637615 44.84902906 45.74987591 44.68042295 43.66661403 44.47173455

User 10
Citadel Gate 25.04249929 24.30651374 24.01926281 28.3083064 26.81506059 24.64981887 28.30327513 27.67935447 27.54077025
Overwatch 33.67074743 32.78813257 31.80732343 30.45400478 30.63552887 31.81212788 30.60550123 34.28869222 31.65274394
Sanctuary Bridge 40.33630869 43.4446861 42.10473852 42.93533031 42.35221973 43.02195082 43.644055 39.80132486 43.46110139
Riverfort 35.62138321 36.74553044 36.66492412 37.25644749 35.07783789 38.30678826 36.06117555 39.61410118 36.17407742
Highfort 31.14895153 27.07944869 27.95912963 27.69775572 27.36894287 27.3318527 27.73175121 33.61590948 27.9544924
Shard 28.88296781 30.57866242 30.1094246 31.90244635 32.42517618 31.6321258 32.58268577 28.72661734 32.11046737

132

(t, t', t'', κ₁, κ₂) (2, 20, 50, 16, 7) (2, 20, 50, 10, 3) (2, 20, 50, 16, 6) (2, 20, 50, 24, 5) (2, 20, 50, 22, 5) (2, 20, 50, 22, 8) (2, 20, 50, 22, 9) (2, 20, 50, 23, 7) (2, 20, 50, 21, 7) Mean

User 1
Citadel Gate 57.57013396 56.71315396 58.21350929 58.21350973 57.93993988 57.38775364 57.54797608 57.64017672 56.97807494 58.28694991
Overwatch 49.94376926 49.84833829 49.08536112 49.19754971 49.56688085 50.05304589 48.76403549 49.45651168 49.16550781 49.37548333
Sanctuary Bridge 52.9568205 53.39329956 52.98014517 52.64447173 53.36564236 53.23734272 53.13079175 52.56565242 52.85979411 52.91379446
Riverfort 39.20478464 39.94932287 37.61351487 38.9553826 39.03932986 39.29442689 38.62844935 38.80522888 39.10016146 39.11621948
Highfort 48.90230903 49.37214291 49.08052587 49.15714786 49.5003778 48.91765412 49.68355594 49.25713366 49.01544397 49.13700614
Shard 60.66375228 61.41383429 60.95533171 61.18880995 61.39311377 60.87728568 60.52178556 60.76608063 60.62748337 60.85199733

User 2
Citadel Gate 32.3347806 33.27917101 32.29590773 32.29590773 32.56856269 32.8982862 32.83254326 32.6542906 33.03673765 32.07715598
Overwatch 49.20145108 47.51005099 47.44918694 47.08256914 47.43251321 48.83452645 47.6101285 48.16092906 47.41813295 47.62113085
Sanctuary Bridge 41.22639689 41.36712853 41.03701824 40.80724234 41.10353327 41.46786164 41.03016738 40.8627436 41.34841235 41.04925242
Riverfort 57.90409057 57.09022197 58.24413007 58.15882897 58.39380057 57.83258021 58.27815352 57.86529531 57.48099945 59.14915582
Highfort 43.79000147 43.5202791 43.14543721 43.06401008 43.19988988 43.39625862 43.44605585 43.82946035 43.43004855 42.86892377
Shard 42.31813163 42.03081695 41.93492252 42.65123918 42.43233052 42.37203534 41.42183811 42.07685666 41.82885983 41.70862767

User 3
Citadel Gate 50.91475482 50.84199551 51.52294446 51.52294446 50.99887849 51.71009757 50.86756459 50.96063951 51.42721804 50.95681979
Overwatch 52.09839552 50.87675797 50.97473081 50.87189943 51.06367711 51.17185514 51.27802184 51.43429161 50.62669428 50.81718467
Sanctuary Bridge 55.13669689 54.97193501 54.650198 54.12902466 54.23686238 54.79377622 54.30812589 54.32006883 54.92047267 54.25610181
Riverfort 46.62602018 46.86356443 45.70623271 46.78129406 46.79802513 46.47073649 46.56814043 46.08686852 46.48765456 46.44755837
Highfort 50.67971313 51.07261078 50.32329839 50.08485538 50.4730471 50.65460673 51.05413558 51.19923524 50.66065458 50.55118013
Shard 57.1224389 57.81936927 57.25027842 56.33884248 56.54956633 57.36646448 57.53500788 57.63655551 57.44845565 57.55604002

User 4
Citadel Gate 62.38216218 63.51321273 63.0261818 63.02617218 62.596495 63.22928692 63.46122894 62.55077449 63.28674571 62.2931538
Overwatch 68.94738822 66.99061012 67.62093266 66.300928 67.03625556 69.09251488 67.0991136 67.86367377 66.9146381 67.24953719
Sanctuary Bridge 56.8193987 56.44956344 55.76804922 56.11501482 55.34735526 55.7693179 55.53156745 56.32000948 55.4953603 55.93639568
Riverfort 53.93061285 54.10375328 53.3289032 53.63735831 52.88739541 53.60685982 53.3858846 53.78373789 53.37628967 53.49260773
Highfort 59.28862989 59.60039165 59.39625476 59.30732342 59.87294314 59.45590799 60.14417297 59.7819457 59.71298069 59.48424263
Shard 65.42241658 66.0785627 66.15237023 65.96594379 65.87415135 65.59681442 65.34214861 65.54557551 65.27732382 65.65423229

User 5
Citadel Gate 58.41758884 58.23371207 58.58905646 58.58904837 58.5522794 58.91444603 58.38476174 58.5862473 58.882542 58.37046195
Overwatch 61.70497678 61.24963198 61.17825829 61.54900114 61.30728018 61.13610723 61.91386475 61.57560705 60.94503797 61.50705641
Sanctuary Bridge 41.85160927 41.91855516 41.55634294 41.13564897 41.14790079 41.67987603 41.63623347 41.61055278 42.05270407 41.57489938
Riverfort 59.56526704 59.44572135 58.75505282 59.70499793 59.38983495 59.54737785 58.80459159 59.46200906 59.30532803 59.51384464
Highfort 52.69305975 53.69555113 53.50832913 52.83134538 53.19637945 52.96037926 53.27200942 53.23524434 52.88158161 53.400125
Shard 51.08134444 50.97480767 51.22879726 51.28137879 50.91810231 51.16202511 50.37601462 51.09011658 50.88516549 50.89893907

User 6
Citadel Gate 59.54824774 59.70607015 59.61353986 59.61353986 59.735552 59.8440343 59.34682733 59.40457277 60.39966032 58.69901867
Overwatch 59.6650494 59.69679211 59.04431543 59.09664914 59.22125574 59.50108341 59.46872443 59.31397479 59.17522663 59.54770048
Sanctuary Bridge 61.42589906 61.03886689 60.44334895 60.98101512 60.84334533 61.45133257 61.38434631 61.03912442 61.21212121 60.55760754
Riverfort 55.56060054 54.7220913 55.74702935 55.55523052 55.13291374 55.24981049 55.4111856 55.70666044 55.02031976 55.39599493
Highfort 61.35088843 61.89263583 61.93161605 61.77932316 61.86312699 61.54809383 62.22455574 61.38287044 61.67918588 62.25436528
Shard 65.30222398 66.09645459 65.66353417 65.52551966 65.71210649 65.47368312 65.55005249 65.65318985 65.33079731 65.5018437

User 7
Citadel Gate 54.23201627 52.56712065 54.86359451 54.86359451 53.73816767 53.84709428 53.9145364 54.42297205 54.41754005 54.32409147
Overwatch 52.98556934 52.09348557 52.39810589 53.13470171 52.09067821 52.55759438 52.79614535 52.24189799 51.67861175 53.52153673
Sanctuary Bridge 40.88423728 40.05773026 40.00123243 39.66688113 39.71364102 40.41532927 40.26968491 39.98832244 40.74648398 40.1427431
Riverfort 58.66543933 58.93894399 58.92943229 59.45893802 59.90535785 58.97163728 60.13036416 58.66028255 58.70617075 60.9620476
Highfort 47.54995177 48.14502663 47.71476856 47.06033979 47.67686327 48.04181796 47.4044915 47.9559775 47.57853305 47.8412569
Shard 40.95970471 40.3030196 40.74662662 40.49531687 40.62024677 41.07590993 40.44784063 40.95161109 41.07297337 40.32352307

User 8
Citadel Gate 56.4509114 56.18170678 55.94877583 55.94876815 55.98307338 56.68797185 56.21743757 56.02661536 55.85392369 56.39940944
Overwatch 56.86361478 56.14938141 55.51892834 55.75992686 55.72734818 56.07047185 56.3679834 56.00931202 55.57387166 56.56793625
Sanctuary Bridge 55.96345591 56.15943669 55.66314759 55.59467517 55.48498881 56.29520349 56.24927731 55.6125499 56.09181528 55.76069202
Riverfort 49.14792026 49.90612786 49.51187916 49.12827044 48.78317138 49.00930329 49.78617207 49.69509381 49.38826101 50.08830861
Highfort 57.91270001 57.76960028 57.58278525 58.20972103 57.85819315 57.68651158 57.82946523 57.53235966 58.06260014 58.31581211
Shard 47.45215382 47.6170985 47.91249035 48.28430144 48.07776012 48.34308084 46.62464442 47.79036059 47.3179253 47.00237102

User 9
Citadel Gate 45.91361562 45.34274975 46.13792832 46.13792832 45.96651223 45.70114695 45.90525535 45.89483566 45.29284417 46.13002078
Overwatch 47.9706398 47.06061153 47.26070329 47.9136 47.17665689 47.0733518 47.55298539 46.96618609 46.57862135 48.44574326
Sanctuary Bridge 41.19495609 41.79386069 40.60526864 40.97757157 40.83355837 40.83134725 41.02911618 40.81643761 41.03632014 41.00305285
Riverfort 50.63643613 50.34226913 51.15615705 50.78466842 50.86962085 50.33745828 51.45375429 50.47559543 50.69668032 51.11821446
Highfort 44.02366143 44.32979534 43.95485616 43.93171374 43.86412149 44.11953285 43.896055 44.19358001 44.14790898 43.7860865
Shard 45.12356235 45.52953234 45.22541867 45.56204049 45.605419 45.26495975 45.31518423 44.84117708 44.79948278 44.95867951

User 10
Citadel Gate 25.04683142 24.66195846 24.87909505 24.87909505 24.99682178 24.56198963 24.46561428 24.64617843 24.59739078 25.52221313
Overwatch 33.00851405 32.34354794 32.83988378 32.202752 32.46682463 33.10703347 33.13328061 33.21380289 32.29500208 32.35141354
Sanctuary Bridge 42.87297804 42.77271615 43.2465134 42.88613606 42.78601916 42.8407536 43.12004422 42.39560887 42.53856749 42.58672513
Riverfort 38.14942653 38.50518848 36.80294879 38.17819832 38.56668125 38.41749609 37.27328037 37.74732676 37.8846381 37.39152501
Highfort 27.06728202 27.43791532 27.53417368 28.4220087 28.12750617 27.72594455 27.96282522 27.48387443 27.81833035 28.19267193
Shard 32.10742444 31.81260342 32.65479572 33.19829897 33.06097351 32.32136411 31.06353072 31.95543598 31.94510834 31.61500605

133

Figure .15: Playthrough Prediction Training Accuracies (Method 1).

(t, t', t'', κ₁, κ₂) (2, 20, 60, 20, 6) (2, 20, 50, 22, 7) (4, 10, 50, 22, 4) (6, 10, 40, 12, 7) (6, 10, 40, 19, 6)

Metric 1
Citadel Gate 0.460240964 0.39545611 0.378037866 0.343958692 0.367091222
Overwatch 0.376829268 0.324926829 0.376878049 0.361073171 0.300195122
Sanctuary Bridge 0.307270502 0.34374541 0.319608323 0.313537332 0.324504284
Riverfort 0.345054945 0.366637363 0.389846154 0.317758242 0.347296703
Highfort 0.327779006 0.325392265 0.325922652 0.283668508 0.284552486
The Shard 0.373269231 0.379903846 0.404951923 0.359663462 0.377307692

Metric 2
Citadel Gate 0.464027539 0.399380379 0.386299484 0.351876076 0.376798623
Overwatch 0.386 0.352731707 0.38897561 0.371902439 0.311560976
Sanctuary Bridge 0.318824969 0.374296206 0.338017136 0.330575275 0.342129743
Riverfort 0.354241758 0.390461538 0.394725275 0.328483516 0.359912088
Highfort 0.336353591 0.347535912 0.329767956 0.307933702 0.290961326
The Shard 0.382355769 0.403028846 0.411875 0.383413462 0.390432692

Metric 3
Citadel Gate 0.460240964 0.39545611 0.378037866 0.343958692 0.367091222
Overwatch 0.376829268 0.324926829 0.376878049 0.361073171 0.300195122
Sanctuary Bridge 0.307270502 0.34374541 0.319608323 0.313537332 0.324504284
Riverfort 0.345054945 0.366637363 0.389846154 0.317758242 0.347296703
Highfort 0.327779006 0.325392265 0.325922652 0.283668508 0.284552486
The Shard 0.373269231 0.379903846 0.404951923 0.359663462 0.377307692

Metric 4
Citadel Gate 0.498864028 0.436626506 0.410464716 0.383270224 0.393459552
Overwatch 0.439707317 0.429853659 0.413268293 0.401756098 0.334780488
Sanctuary Bridge 0.394222766 0.444014688 0.389522644 0.383059976 0.385312118
Riverfort 0.420747253 0.44778022 0.415912088 0.34967033 0.385450549
Highfort 0.393723757 0.40481768 0.350497238 0.360928177 0.317966851
The Shard 0.444134615 0.457740385 0.441730769 0.431538462 0.422644231

134

(t, t', t'', κ₁, κ₂) (6, 16, 50, 12, 3) (4, 20, 40, 24, 5) (6, 10, 60, 20, 10) (6, 10, 40, 12, 3) (2, 20, 50, 16, 7)

Metric 1
Citadel Gate 0.481445783 0.508364888 0.449913941 0.422650602 0.401858864
Overwatch 0.36702439 0.394146341 0.347756098 0.318341463 0.331365854
Sanctuary Bridge 0.345948592 0.330917993 0.365385557 0.302227662 0.362643819
Riverfort 0.39578022 0.407120879 0.316703297 0.368131868 0.358461538
Highfort 0.30638674 0.335248619 0.359160221 0.240353591 0.317348066
The Shard 0.455913462 0.474326923 0.416971154 0.369951923 0.369423077

Metric 2
Citadel Gate 0.4832358 0.514010327 0.459414802 0.428709122 0.408674699
Overwatch 0.378487805 0.419609756 0.349073171 0.324878049 0.35995122
Sanctuary Bridge 0.357356181 0.360195838 0.376891065 0.317307222 0.384577723
Riverfort 0.40443956 0.425494505 0.324659341 0.373406593 0.383472527
Highfort 0.322740331 0.34559116 0.36238674 0.252861878 0.338828729
The Shard 0.466634615 0.483798077 0.422644231 0.380721154 0.394759615

Metric 3
Citadel Gate 0.481445783 0.508364888 0.449913941 0.422650602 0.401858864
Overwatch 0.36702439 0.394146341 0.347756098 0.318341463 0.331365854
Sanctuary Bridge 0.345948592 0.330917993 0.365385557 0.302227662 0.362643819
Riverfort 0.39578022 0.407120879 0.316703297 0.368131868 0.358461538
Highfort 0.30638674 0.335248619 0.359160221 0.240353591 0.317348066
The Shard 0.455913462 0.474326923 0.416971154 0.369951923 0.369423077

Metric 4
Citadel Gate 0.489225473 0.527160069 0.491566265 0.442134251 0.435731497
Overwatch 0.402585366 0.454634146 0.389609756 0.340390244 0.428682927
Sanctuary Bridge 0.391627907 0.418898409 0.425556916 0.348151775 0.444455324
Riverfort 0.427604396 0.457142857 0.365010989 0.382769231 0.433142857
Highfort 0.359027624 0.386563536 0.394342541 0.277834254 0.396729282
The Shard 0.497548077 0.503605769 0.457596154 0.405048077 0.450384615

135

(t, t', t'', κ₁, κ₂) (2, 20, 50, 10, 3) (2, 20, 50, 16, 6) (2, 20, 50, 24, 5) (2, 20, 50, 22, 5) (2, 20, 50, 22, 8)

Metric 1
Citadel Gate 0.51524957 0.374595525 0.350774527 0.366678141 0.314836489
Overwatch 0.40004878 0.319853659 0.339268293 0.325756098 0.334634146
Sanctuary Bridge 0.29625459 0.30247246 0.324700122 0.341346389 0.322301102
Riverfort 0.390945055 0.330813187 0.358241758 0.356747253 0.334021978
Highfort 0.299491713 0.36 0.343027624 0.339049724 0.316022099
The Shard 0.400673077 0.379086538 0.399423077 0.416730769 0.351875

Metric 2
Citadel Gate 0.51848537 0.38939759 0.376179002 0.37858864 0.334802065
Overwatch 0.412487805 0.337609756 0.358390244 0.34497561 0.354585366
Sanctuary Bridge 0.31373317 0.324700122 0.344430845 0.366511628 0.342031824
Riverfort 0.406285714 0.343296703 0.375120879 0.375164835 0.361802198
Highfort 0.315270718 0.370077348 0.362519337 0.354209945 0.339668508
The Shard 0.401923077 0.389711538 0.422451923 0.435865385 0.368509615

Metric 3
Citadel Gate 0.51524957 0.374595525 0.350774527 0.366678141 0.314836489
Overwatch 0.40004878 0.319853659 0.339268293 0.325756098 0.334634146
Sanctuary Bridge 0.29625459 0.30247246 0.324700122 0.341346389 0.322301102
Riverfort 0.390945055 0.330813187 0.358241758 0.356747253 0.334021978
Highfort 0.299491713 0.36 0.343027624 0.339049724 0.316022099
The Shard 0.400673077 0.379086538 0.399423077 0.416730769 0.351875

Metric 4
Citadel Gate 0.537142857 0.418932874 0.426987952 0.416179002 0.387607573
Overwatch 0.441073171 0.386390244 0.42702439 0.410926829 0.432634146
Sanctuary Bridge 0.362350061 0.383353733 0.400979192 0.41747858 0.410820073
Riverfort 0.428395604 0.397406593 0.42021978 0.418417582 0.421274725
Highfort 0.34921547 0.411668508 0.406232044 0.402033149 0.392265193
The Shard 0.425432692 0.427403846 0.465384615 0.472355769 0.421538462

136

(t, t', t'', κ₁, κ₂) (2, 20, 50, 22, 9) (2, 20, 50, 23, 7) (2, 20, 50, 21, 7) Mean

Metric 1
Citadel Gate 0.377280551 0.406609294 0.383614458 0.405480972
Overwatch 0.324634146 0.286878049 0.301268293 0.340604336
Sanctuary Bridge 0.327637699 0.338017136 0.334932681 0.327969536
Riverfort 0.353846154 0.361274725 0.363824176 0.359028083
Highfort 0.332552486 0.324640884 0.326364641 0.319275629
The Shard 0.346826923 0.371682692 0.393846154 0.391212607

Metric 2
Citadel Gate 0.40626506 0.420240964 0.406471601 0.416825397
Overwatch 0.356780488 0.308439024 0.330878049 0.358184282
Sanctuary Bridge 0.352117503 0.368518972 0.360979192 0.348510812
Riverfort 0.385230769 0.383032967 0.38189011 0.375062271
Highfort 0.367116022 0.34439779 0.349790055 0.335445058
The Shard 0.376826923 0.394423077 0.414519231 0.406883013

Metric 3
Citadel Gate 0.377280551 0.406609294 0.383614458 0.405480972
Overwatch 0.324634146 0.286878049 0.301268293 0.340604336
Sanctuary Bridge 0.327637699 0.338017136 0.334932681 0.327969536
Riverfort 0.353846154 0.361274725 0.363824176 0.359028083
Highfort 0.332552486 0.324640884 0.326364641 0.319275629
The Shard 0.346826923 0.371682692 0.393846154 0.391212607

Metric 4
Citadel Gate 0.459690189 0.472289157 0.460585198 0.449328744
Overwatch 0.431560976 0.389512195 0.41497561 0.409409214
Sanctuary Bridge 0.414247246 0.435152999 0.430991432 0.404455324
Riverfort 0.44843956 0.439252747 0.439868132 0.416583639
Highfort 0.426298343 0.41038674 0.406541436 0.380392879
The Shard 0.429903846 0.454086538 0.467740385 0.448656517

137

Figure .16: Playthrough Prediction Test Accuracies (Method 1).

(t, t', t'', κ₁, κ₂) (2, 20, 60, 20, 6) (2, 20, 50, 22, 7) (4, 10, 50, 22, 4) (6, 10, 40, 12, 7) (6, 10, 40, 19, 6)

Metric 1
Citadel Gate 0.356734694 0.311734694 0.344795918 0.264489796 0.293877551
Overwatch 0.316601307 0.305620915 0.379869281 0.264052288 0.272156863
Sanctuary Bridge 0.366923077 0.433333333 0.326666667 0.374358974 0.355384615
Riverfort 0.352380952 0.342857143 0.346031746 0.291428571 0.302857143
Highfort 0.361764706 0.354705882 0.371176471 0.342941176 0.292941176
The Shard 0.278014184 0.287092199 0.325106383 0.247659574 0.294184397

Metric 2
Citadel Gate 0.370204082 0.318265306 0.341326531 0.268367347 0.295102041
Overwatch 0.338039216 0.30875817 0.387189542 0.275294118 0.282614379
Sanctuary Bridge 0.378717949 0.461794872 0.332564103 0.376410256 0.372051282
Riverfort 0.365079365 0.378412698 0.344761905 0.295873016 0.316825397
Highfort 0.374705882 0.380588235 0.384705882 0.361764706 0.33
The Shard 0.285673759 0.304397163 0.312056738 0.267234043 0.295602837

Metric 3
Citadel Gate 0.356734694 0.311734694 0.344795918 0.264489796 0.293877551
Overwatch 0.316601307 0.305620915 0.379869281 0.264052288 0.272156863
Sanctuary Bridge 0.366923077 0.433333333 0.326666667 0.374358974 0.355384615
Riverfort 0.352380952 0.342857143 0.346031746 0.291428571 0.302857143
Highfort 0.361764706 0.354705882 0.371176471 0.342941176 0.292941176
The Shard 0.278014184 0.287092199 0.325106383 0.247659574 0.294184397

Metric 4
Citadel Gate 0.413265306 0.366020408 0.350204082 0.291632653 0.319183673
Overwatch 0.431372549 0.407843137 0.41254902 0.312679739 0.320784314
Sanctuary Bridge 0.422307692 0.507692308 0.368974359 0.403333333 0.395384615
Riverfort 0.42984127 0.445714286 0.403174603 0.311746032 0.351111111
Highfort 0.43 0.452941176 0.415294118 0.394117647 0.353529412
The Shard 0.323971631 0.330496454 0.352907801 0.319148936 0.330780142

138

(t, t', t'', κ₁, κ₂) (6, 16, 50, 12, 3) (4, 20, 40, 24, 5) (6, 10, 60, 20, 10) (6, 10, 40, 12, 3) (2, 20, 50, 16, 7)

Metric 1
Citadel Gate 0.411938776 0.441938776 0.340918367 0.367755102 0.317142857
Overwatch 0.361045752 0.380653595 0.292810458 0.315294118 0.339346405
Sanctuary Bridge 0.432307692 0.435897436 0.395897436 0.346410256 0.451282051
Riverfort 0.366349206 0.393015873 0.316825397 0.380952381 0.344126984
Highfort 0.368235294 0.382941176 0.384117647 0.269411765 0.332352941
The Shard 0.345248227 0.39035461 0.269787234 0.303829787 0.278865248

Metric 2
Citadel Gate 0.411938776 0.443571429 0.343367347 0.370510204 0.315408163
Overwatch 0.386666667 0.390588235 0.293071895 0.324705882 0.350588235
Sanctuary Bridge 0.441794872 0.46025641 0.402820513 0.354102564 0.454102564
Riverfort 0.371428571 0.45015873 0.322539683 0.38984127 0.367619048
Highfort 0.38 0.391764706 0.404705882 0.286470588 0.375882353
The Shard 0.345531915 0.400567376 0.262411348 0.307234043 0.298156028

Metric 3
Citadel Gate 0.411938776 0.441938776 0.340918367 0.367755102 0.317142857
Overwatch 0.361045752 0.380653595 0.292810458 0.315294118 0.339346405
Sanctuary Bridge 0.432307692 0.435897436 0.395897436 0.346410256 0.451282051
Riverfort 0.366349206 0.393015873 0.316825397 0.380952381 0.344126984
Highfort 0.368235294 0.382941176 0.384117647 0.269411765 0.332352941
The Shard 0.345248227 0.39035461 0.269787234 0.303829787 0.278865248

Metric 4
Citadel Gate 0.416632653 0.457244898 0.378571429 0.382142857 0.355306122
Overwatch 0.437385621 0.438954248 0.34248366 0.352941176 0.418039216
Sanctuary Bridge 0.468974359 0.496666667 0.448461538 0.365128205 0.497179487
Riverfort 0.415873016 0.487619048 0.371428571 0.406349206 0.441269841
Highfort 0.401176471 0.457647059 0.437647059 0.302352941 0.419411765
The Shard 0.390070922 0.404822695 0.299007092 0.333333333 0.330496454

139

(t, t', t'', κ₁, κ₂) (2, 20, 50, 10, 3) (2, 20, 50, 16, 6) (2, 20, 50, 24, 5) (2, 20, 50, 22, 5) (2, 20, 50, 22, 8)

Metric 1
Citadel Gate 0.444897959 0.304183673 0.320306122 0.316122449 0.240816327
Overwatch 0.396339869 0.271633987 0.303006536 0.288888889 0.304052288
Sanctuary Bridge 0.358974359 0.390512821 0.394871795 0.417179487 0.355897436
Riverfort 0.355555556 0.319365079 0.356825397 0.365079365 0.352380952
Highfort 0.397647059 0.414117647 0.44 0.405882353 0.363529412
The Shard 0.297021277 0.284539007 0.313475177 0.347801418 0.221560284

Metric 2
Citadel Gate 0.449897959 0.315204082 0.329081633 0.324285714 0.256836735
Overwatch 0.396601307 0.279477124 0.328366013 0.31503268 0.334379085
Sanctuary Bridge 0.37025641 0.397179487 0.403589744 0.425128205 0.384871795
Riverfort 0.380952381 0.326984127 0.355555556 0.365714286 0.377777778
Highfort 0.376470588 0.452941176 0.470588235 0.464117647 0.387058824
The Shard 0.300992908 0.270638298 0.308652482 0.342695035 0.227234043

Metric 3
Citadel Gate 0.444897959 0.304183673 0.320306122 0.316122449 0.240816327
Overwatch 0.396339869 0.271633987 0.303006536 0.288888889 0.304052288
Sanctuary Bridge 0.358974359 0.390512821 0.394871795 0.417179487 0.355897436
Riverfort 0.355555556 0.319365079 0.356825397 0.365079365 0.352380952
Highfort 0.397647059 0.414117647 0.44 0.405882353 0.363529412
The Shard 0.297021277 0.284539007 0.313475177 0.347801418 0.221560284

Metric 4
Citadel Gate 0.467755102 0.356836735 0.367755102 0.356020408 0.306530612
Overwatch 0.432941176 0.331764706 0.392156863 0.362091503 0.403660131
Sanctuary Bridge 0.37025641 0.421538462 0.434615385 0.445897436 0.455128205
Riverfort 0.420952381 0.376507937 0.418412698 0.431746032 0.455873016
Highfort 0.396470588 0.469411765 0.532352941 0.486470588 0.443529412
The Shard 0.31858156 0.310921986 0.334184397 0.366524823 0.270921986

140

(t, t', t'', κ₁, κ₂) (2, 20, 50, 22, 9) (2, 20, 50, 23, 7) (2, 20, 50, 21, 7) Mean

Metric 1
Citadel Gate 0.308163265 0.335 0.316530612 0.335408163
Overwatch 0.303006536 0.322875817 0.275555556 0.316267248
Sanctuary Bridge 0.328205128 0.423076923 0.420512821 0.389316239
Riverfort 0.365714286 0.346031746 0.341587302 0.346631393
Highfort 0.371764706 0.398235294 0.369411765 0.367843137
The Shard 0.226950355 0.299574468 0.315460993 0.295918046

Metric 2
Citadel Gate 0.329591837 0.346122449 0.329591837 0.342148526
Overwatch 0.317908497 0.329411765 0.317647059 0.330907771
Sanctuary Bridge 0.362820513 0.442307692 0.436410256 0.403176638
Riverfort 0.365079365 0.363809524 0.375238095 0.361869489
Highfort 0.403529412 0.408823529 0.405882353 0.391111111
The Shard 0.247375887 0.302695035 0.310921986 0.299448385

Metric 3
Citadel Gate 0.308163265 0.335 0.316530612 0.335408163
Overwatch 0.303006536 0.322875817 0.275555556 0.316267248
Sanctuary Bridge 0.328205128 0.423076923 0.420512821 0.389316239
Riverfort 0.365714286 0.346031746 0.341587302 0.346631393
Highfort 0.371764706 0.398235294 0.369411765 0.367843137
The Shard 0.226950355 0.299574468 0.315460993 0.295918046

Metric 4
Citadel Gate 0.375408163 0.39244898 0.380612245 0.374087302
Overwatch 0.376470588 0.409150327 0.404444444 0.388206245
Sanctuary Bridge 0.412307692 0.480512821 0.483333333 0.437649573
Riverfort 0.42031746 0.464761905 0.476190476 0.418271605
Highfort 0.460588235 0.474705882 0.449411765 0.432058824
The Shard 0.283404255 0.335035461 0.342411348 0.332056738

141

Figure .17: Playthrough Prediction Training Accuracies (Method 2 — Multinomial).

(t, t', t'', κ₁, κ₂) (2, 20, 60, 20, 6) (2, 20, 50, 22, 7) (4, 10, 50, 22, 4) (6, 10, 40, 12, 7) (6, 10, 40, 19, 6)

Baseline
Citadel Gate 0.581325301 0.581325301 0.581325301 0.581709145 0.581709145
Overwatch 0.54884742 0.549342105 0.549342105 0.549835706 0.549835706
Sanctuary Bridge 0.531701891 0.532222222 0.532222222 0.532150776 0.532150776
Riverfort 0.55 0.550440744 0.550440744 0.55078125 0.55078125
Highfort 0.542120912 0.542574257 0.542574257 0.542574257 0.542574257
The Shard 0.571888412 0.572347267 0.572347267 0.572649573 0.572649573

Metric 1
Citadel Gate 0.59939759 0.582831325 0.611445783 0.625187406 0.620689655
Overwatch 0.568605928 0.559210526 0.57127193 0.579408543 0.583789704
Sanctuary Bridge 0.540600667 0.537777778 0.563333333 0.575388027 0.586474501
Riverfort 0.55 0.55337904 0.576885406 0.583984375 0.580078125
Highfort 0.545094153 0.545544554 0.57029703 0.593287266 0.57946693
The Shard 0.575107296 0.578778135 0.589496249 0.608974359 0.590811966

Metric 2
Citadel Gate 0.596385542 0.582831325 0.605421687 0.614692654 0.620689655
Overwatch 0.565312843 0.550438596 0.567982456 0.576122673 0.575027382
Sanctuary Bridge 0.536151279 0.537777778 0.558888889 0.563192905 0.569844789
Riverfort 0.55 0.55337904 0.569049951 0.579101563 0.576171875
Highfort 0.542120912 0.542574257 0.562376238 0.586377098 0.567620928
The Shard 0.576180258 0.57449089 0.592711683 0.603632479 0.586538462

Metric 3
Citadel Gate 0.59939759 0.582831325 0.611445783 0.623688156 0.620689655
Overwatch 0.568605928 0.559210526 0.57127193 0.578313253 0.583789704
Sanctuary Bridge 0.540600667 0.537777778 0.563333333 0.575388027 0.586474501
Riverfort 0.55 0.55337904 0.576885406 0.583984375 0.580078125
Highfort 0.545094153 0.545544554 0.569306931 0.593287266 0.578479763
The Shard 0.575107296 0.578778135 0.589496249 0.608974359 0.590811966

Metric 4
Citadel Gate 0.551204819 0.56626506 0.561746988 0.505247376 0.538230885
Overwatch 0.563117453 0.543859649 0.54495614 0.519167579 0.514786418
Sanctuary Bridge 0.536151279 0.528888889 0.537777778 0.506651885 0.521064302
Riverfort 0.55 0.539666993 0.536728697 0.51953125 0.526367188
Highfort 0.545094153 0.535643564 0.534653465 0.502467917 0.514313919
The Shard 0.572961373 0.56698821 0.573419078 0.518162393 0.536324786

142

(t, t', t'', κ₁, κ₂) (6, 16, 50, 12, 3) (4, 20, 40, 24, 5) (6, 10, 60, 20, 10) (6, 10, 40, 12, 3) (2, 20, 50, 16, 7)

Baseline
Citadel Gate 0.581325301 0.581709145 0.581325301 0.581709145 0.581325301
Overwatch 0.549342105 0.549835706 0.54884742 0.549835706 0.549342105
Sanctuary Bridge 0.532222222 0.532150776 0.531701891 0.532150776 0.532222222
Riverfort 0.550440744 0.55078125 0.55 0.55078125 0.550440744
Highfort 0.542574257 0.542574257 0.542120912 0.542941757 0.542574257
The Shard 0.572347267 0.572649573 0.571888412 0.572649573 0.572347267

Metric 1
Citadel Gate 0.581325301 0.581709145 0.615963855 0.581709145 0.581325301
Overwatch 0.549342105 0.549835706 0.571899012 0.553121577 0.558114035
Sanctuary Bridge 0.532222222 0.532150776 0.546162403 0.534368071 0.538888889
Riverfort 0.550440744 0.55078125 0.573529412 0.551757813 0.556317336
Highfort 0.542574257 0.542941757 0.567888999 0.544916091 0.548514851
The Shard 0.572347267 0.572649573 0.571888412 0.575854701 0.57449089

Metric 2
Citadel Gate 0.581325301 0.581709145 0.620481928 0.586206897 0.581325301
Overwatch 0.549342105 0.549835706 0.572996707 0.553121577 0.558114035
Sanctuary Bridge 0.532222222 0.532150776 0.548387097 0.534368071 0.534444444
Riverfort 0.550440744 0.55078125 0.570588235 0.553710938 0.555337904
Highfort 0.542574257 0.542941757 0.57086224 0.544916091 0.545544554
The Shard 0.572347267 0.572649573 0.589055794 0.576923077 0.57449089

Metric 3
Citadel Gate 0.581325301 0.581709145 0.615963855 0.581709145 0.581325301
Overwatch 0.549342105 0.549835706 0.571899012 0.553121577 0.558114035
Sanctuary Bridge 0.532222222 0.532150776 0.546162403 0.534368071 0.538888889
Riverfort 0.550440744 0.55078125 0.573529412 0.551757813 0.555337904
Highfort 0.542574257 0.542941757 0.566897919 0.544916091 0.548514851
The Shard 0.572347267 0.572649573 0.589055794 0.575854701 0.57449089

Metric 4
Citadel Gate 0.581325301 0.572713643 0.516566265 0.563718141 0.55873494
Overwatch 0.549342105 0.547645126 0.515916575 0.538882804 0.54495614
Sanctuary Bridge 0.532222222 0.532150776 0.515016685 0.521064302 0.523333333
Riverfort 0.550440744 0.547851563 0.512745098 0.541015625 0.540646425
Highfort 0.542574257 0.542941757 0.508424182 0.529121422 0.533663366
The Shard 0.572347267 0.572649573 0.539699571 0.561965812 0.56698821

143

(t, t', t'', κ₁, κ₂) (2, 20, 50, 10, 3) (2, 20, 50, 16, 6) (2, 20, 50, 24, 5) (2, 20, 50, 22, 5) (2, 20, 50, 22, 8)

Baseline
Citadel Gate 0.581325301 0.581325301 0.581325301 0.581325301 0.581325301
Overwatch 0.549342105 0.549342105 0.549342105 0.549342105 0.549342105
Sanctuary Bridge 0.532222222 0.532222222 0.532222222 0.532222222 0.532222222
Riverfort 0.550440744 0.550440744 0.550440744 0.550440744 0.550440744
Highfort 0.542574257 0.542574257 0.542574257 0.542574257 0.542574257
The Shard 0.572347267 0.572347267 0.572347267 0.572347267 0.572347267

Metric 1
Citadel Gate 0.581325301 0.582831325 0.584337349 0.584337349 0.588855422
Overwatch 0.549342105 0.552631579 0.551535088 0.554824561 0.558114035
Sanctuary Bridge 0.532222222 0.535555556 0.536666667 0.536666667 0.534444444
Riverfort 0.550440744 0.55337904 0.554358472 0.554358472 0.560235064
Highfort 0.542574257 0.543564356 0.545544554 0.545544554 0.551485149
The Shard 0.572347267 0.573419078 0.572347267 0.573419078 0.580921758

Metric 2
Citadel Gate 0.581325301 0.582831325 0.584337349 0.584337349 0.588855422
Overwatch 0.549342105 0.552631579 0.552631579 0.554824561 0.557017544
Sanctuary Bridge 0.532222222 0.527777778 0.533333333 0.535555556 0.53
Riverfort 0.550440744 0.550440744 0.555337904 0.554358472 0.547502449
Highfort 0.542574257 0.543564356 0.541584158 0.545544554 0.544554455
The Shard 0.572347267 0.573419078 0.572347267 0.573419078 0.577706324

Metric 3
Citadel Gate 0.581325301 0.582831325 0.584337349 0.584337349 0.588855422
Overwatch 0.549342105 0.552631579 0.551535088 0.554824561 0.558114035
Sanctuary Bridge 0.532222222 0.535555556 0.536666667 0.536666667 0.534444444
Riverfort 0.550440744 0.55337904 0.554358472 0.554358472 0.560235064
Highfort 0.542574257 0.543564356 0.545544554 0.545544554 0.551485149
The Shard 0.572347267 0.573419078 0.572347267 0.573419078 0.580921758

Metric 4
Citadel Gate 0.581325301 0.564759036 0.557228916 0.555722892 0.557228916
Overwatch 0.549342105 0.55372807 0.551535088 0.557017544 0.550438596
Sanctuary Bridge 0.532222222 0.536666667 0.536666667 0.535555556 0.528888889
Riverfort 0.550440744 0.551420176 0.556317336 0.555337904 0.545543585
Highfort 0.542574257 0.543564356 0.545544554 0.547524752 0.538613861
The Shard 0.572347267 0.56698821 0.570203644 0.571275456 0.569131833

144

(t, t', t'', κ₁, κ₂) (2, 20, 50, 22, 9) (2, 20, 50, 23, 7) (2, 20, 50, 21, 7) Mean

Baseline
Citadel Gate 0.581325301 0.581325301 0.581325301 0.5814106
Overwatch 0.549342105 0.549342105 0.549342105 0.549396829
Sanctuary Bridge 0.532222222 0.532222222 0.532222222 0.532148531
Riverfort 0.550440744 0.550440744 0.550440744 0.550467441
Highfort 0.542574257 0.542574257 0.542574257 0.542544302
The Shard 0.572347267 0.572347267 0.572347267 0.572363462

Metric 1
Citadel Gate 0.593373494 0.596385542 0.585843373 0.593270759
Overwatch 0.567982456 0.559210526 0.551535088 0.560543028
Sanctuary Bridge 0.542222222 0.538888889 0.54 0.543557407
Riverfort 0.568070519 0.556317336 0.556317336 0.560035027
Highfort 0.556435644 0.552475248 0.547524752 0.553648578
The Shard 0.59056806 0.577706324 0.57449089 0.579201032

Metric 2
Citadel Gate 0.588855422 0.590361446 0.587349398 0.59218458
Overwatch 0.564692982 0.555921053 0.551535088 0.558716143
Sanctuary Bridge 0.543333333 0.536666667 0.538888889 0.540289224
Riverfort 0.563173359 0.554358472 0.554358472 0.557696229
Highfort 0.556435644 0.545544554 0.543564356 0.55062637
The Shard 0.586280815 0.575562701 0.571275456 0.578965464

Metric 3
Citadel Gate 0.593373494 0.596385542 0.585843373 0.593187468
Overwatch 0.567982456 0.559210526 0.551535088 0.560482179
Sanctuary Bridge 0.542222222 0.538888889 0.54 0.543557407
Riverfort 0.567091087 0.557296768 0.556317336 0.559980614
Highfort 0.556435644 0.552475248 0.547524752 0.55348367
The Shard 0.591639871 0.577706324 0.57449089 0.58021432

Metric 4
Citadel Gate 0.567771084 0.549698795 0.546686747 0.555343061
Overwatch 0.535087719 0.539473684 0.548245614 0.542638801
Sanctuary Bridge 0.537777778 0.524444444 0.527777778 0.528573414
Riverfort 0.538687561 0.541625857 0.542605289 0.541498446
Highfort 0.534653465 0.536633663 0.535643564 0.534091693
The Shard 0.560557342 0.564844587 0.559485531 0.562018897

145

Figure .18: Playthrough Prediction Test Accuracies (Method 2 — Multinomial).

(t, t', t'', κ₁, κ₂) (2, 20, 60, 20, 6) (2, 20, 50, 22, 7) (4, 10, 50, 22, 4) (6, 10, 40, 12, 7) (6, 10, 40, 19, 6)

Baseline
Citadel Gate 0.528061224 0.528061224 0.528061224 0.528061224 0.528061224
Overwatch 0.594771242 0.594771242 0.594771242 0.594771242 0.594771242
Sanctuary Bridge 0.666666667 0.666666667 0.666666667 0.666666667 0.666666667
Riverfort 0.603174603 0.603174603 0.603174603 0.603174603 0.603174603
Highfort 0.720588235 0.720588235 0.720588235 0.720588235 0.720588235
The Shard 0.460992908 0.460992908 0.460992908 0.460992908 0.460992908

Metric 1
Citadel Gate 0.242346939 0.232142857 0.227040816 0.232142857 0.221938776
Overwatch 0.254901961 0.241830065 0.222222222 0.222222222 0.215686275
Sanctuary Bridge 0.307692308 0.301282051 0.288461538 0.301282051 0.294871795
Riverfort 0.603174603 0.555555556 0.523809524 0.53968254 0.476190476
Highfort 0.485294118 0.5 0.441176471 0.455882353 0.426470588
The Shard 0.29787234 0.304964539 0.283687943 0.319148936 0.290780142

Metric 2
Citadel Gate 0.237244898 0.234693878 0.232142857 0.232142857 0.224489796
Overwatch 0.254901961 0.248366013 0.22875817 0.215686275 0.215686275
Sanctuary Bridge 0.307692308 0.301282051 0.294871795 0.288461538 0.275641026
Riverfort 0.603174603 0.587301587 0.555555556 0.53968254 0.492063492
Highfort 0.5 0.485294118 0.441176471 0.470588235 0.441176471
The Shard 0.290780142 0.304964539 0.283687943 0.312056738 0.283687943

Metric 3
Citadel Gate 0.242346939 0.232142857 0.227040816 0.232142857 0.221938776
Overwatch 0.254901961 0.241830065 0.222222222 0.222222222 0.215686275
Sanctuary Bridge 0.307692308 0.301282051 0.288461538 0.301282051 0.294871795
Riverfort 0.603174603 0.555555556 0.523809524 0.53968254 0.476190476
Highfort 0.485294118 0.5 0.441176471 0.455882353 0.426470588
The Shard 0.29787234 0.304964539 0.283687943 0.319148936 0.290780142

Metric 4
Citadel Gate 0.216836735 0.214285714 0.211734694 0.211734694 0.198979592
Overwatch 0.189542484 0.169934641 0.176470588 0.183006536 0.169934641
Sanctuary Bridge 0.269230769 0.243589744 0.230769231 0.230769231 0.25
Riverfort 0.444444444 0.428571429 0.349206349 0.412698413 0.333333333
Highfort 0.382352941 0.367647059 0.279411765 0.367647059 0.279411765
The Shard 0.262411348 0.24822695 0.219858156 0.255319149 0.234042553

146

(t, t', t'', κ₁, κ₂) (6, 16, 50, 12, 3) (4, 20, 40, 24, 5) (6, 10, 60, 20, 10) (6, 10, 40, 12, 3) (2, 20, 50, 16, 7)

Baseline
Citadel Gate 0.528061224 0.528061224 0.528061224 0.528061224 0.528061224
Overwatch 0.594771242 0.594771242 0.594771242 0.594771242 0.594771242
Sanctuary Bridge 0.666666667 0.666666667 0.666666667 0.666666667 0.666666667
Riverfort 0.603174603 0.603174603 0.603174603 0.603174603 0.603174603
Highfort 0.720588235 0.720588235 0.720588235 0.720588235 0.720588235
The Shard 0.460992908 0.460992908 0.460992908 0.460992908 0.460992908

Metric 1
Citadel Gate 0.232142857 0.232142857 0.214285714 0.234693878 0.232142857
Overwatch 0.248366013 0.248366013 0.235294118 0.241830065 0.241830065
Sanctuary Bridge 0.307692308 0.307692308 0.230769231 0.314102564 0.307692308
Riverfort 0.587301587 0.587301587 0.476190476 0.603174603 0.571428571
Highfort 0.485294118 0.485294118 0.25 0.485294118 0.5
The Shard 0.304964539 0.304964539 0.276595745 0.29787234 0.304964539

Metric 2
Citadel Gate 0.234693878 0.234693878 0.219387755 0.234693878 0.234693878
Overwatch 0.248366013 0.248366013 0.241830065 0.241830065 0.248366013
Sanctuary Bridge 0.307692308 0.307692308 0.230769231 0.307692308 0.301282051
Riverfort 0.603174603 0.603174603 0.476190476 0.603174603 0.603174603
Highfort 0.485294118 0.485294118 0.264705882 0.485294118 0.5
The Shard 0.304964539 0.304964539 0.269503546 0.29787234 0.304964539

Metric 3
Citadel Gate 0.232142857 0.232142857 0.214285714 0.234693878 0.232142857
Overwatch 0.248366013 0.248366013 0.235294118 0.241830065 0.241830065
Sanctuary Bridge 0.307692308 0.307692308 0.230769231 0.314102564 0.307692308
Riverfort 0.587301587 0.587301587 0.476190476 0.603174603 0.571428571
Highfort 0.485294118 0.485294118 0.25 0.485294118 0.5
The Shard 0.304964539 0.304964539 0.276595745 0.29787234 0.304964539

Metric 4
Citadel Gate 0.206632653 0.219387755 0.198979592 0.209183673 0.204081633
Overwatch 0.176470588 0.248366013 0.169934641 0.169934641 0.169934641
Sanctuary Bridge 0.256410256 0.211538462 0.192307692 0.243589744 0.25
Riverfort 0.396825397 0.46031746 0.333333333 0.476190476 0.492063492
Highfort 0.338235294 0.382352941 0.205882353 0.338235294 0.308823529
The Shard 0.262411348 0.255319149 0.19858156 0.24822695 0.241134752

147

(t, t', t'', κ₁, κ₂) (2, 20, 50, 10, 3) (2, 20, 50, 16, 6) (2, 20, 50, 24, 5) (2, 20, 50, 22, 5) (2, 20, 50, 22, 8)

Baseline
Citadel Gate 0.528061224 0.528061224 0.528061224 0.528061224 0.528061224
Overwatch 0.594771242 0.594771242 0.594771242 0.594771242 0.594771242
Sanctuary Bridge 0.666666667 0.666666667 0.666666667 0.666666667 0.666666667
Riverfort 0.603174603 0.603174603 0.603174603 0.603174603 0.603174603
Highfort 0.720588235 0.720588235 0.720588235 0.720588235 0.720588235
The Shard 0.460992908 0.460992908 0.460992908 0.460992908 0.460992908

Metric 1
Citadel Gate 0.232142857 0.232142857 0.232142857 0.232142857 0.227040816
Overwatch 0.248366013 0.248366013 0.248366013 0.248366013 0.235294118
Sanctuary Bridge 0.307692308 0.307692308 0.294871795 0.294871795 0.301282051
Riverfort 0.587301587 0.571428571 0.571428571 0.571428571 0.53968254
Highfort 0.485294118 0.485294118 0.5 0.5 0.470588235
The Shard 0.304964539 0.304964539 0.304964539 0.304964539 0.262411348

Metric 2
Citadel Gate 0.234693878 0.234693878 0.234693878 0.234693878 0.227040816
Overwatch 0.254901961 0.248366013 0.248366013 0.248366013 0.235294118
Sanctuary Bridge 0.314102564 0.307692308 0.294871795 0.294871795 0.294871795
Riverfort 0.603174603 0.603174603 0.587301587 0.587301587 0.53968254
Highfort 0.485294118 0.485294118 0.485294118 0.470588235 0.470588235
The Shard 0.304964539 0.304964539 0.304964539 0.304964539 0.262411348

Metric 3
Citadel Gate 0.232142857 0.232142857 0.232142857 0.232142857 0.227040816
Overwatch 0.248366013 0.248366013 0.248366013 0.248366013 0.235294118
Sanctuary Bridge 0.307692308 0.307692308 0.294871795 0.294871795 0.301282051
Riverfort 0.587301587 0.571428571 0.571428571 0.571428571 0.53968254
Highfort 0.485294118 0.485294118 0.5 0.5 0.470588235
The Shard 0.304964539 0.304964539 0.304964539 0.304964539 0.262411348

Metric 4
Citadel Gate 0.204081633 0.209183673 0.209183673 0.209183673 0.219387755
Overwatch 0.189542484 0.189542484 0.196078431 0.183006536 0.176470588
Sanctuary Bridge 0.237179487 0.25 0.217948718 0.243589744 0.243589744
Riverfort 0.412698413 0.444444444 0.444444444 0.444444444 0.380952381
Highfort 0.411764706 0.367647059 0.323529412 0.382352941 0.352941176
The Shard 0.262411348 0.234042553 0.255319149 0.24822695 0.226950355

148

(t, t', t'', κ₁, κ₂) (2, 20, 50, 22, 9) (2, 20, 50, 23, 7) (2, 20, 50, 21, 7) Mean

Baseline
Citadel Gate 0.528061224 0.528061224 0.528061224 0.528061224
Overwatch 0.594771242 0.594771242 0.594771242 0.594771242
Sanctuary Bridge 0.666666667 0.666666667 0.666666667 0.666666667
Riverfort 0.603174603 0.603174603 0.603174603 0.603174603
Highfort 0.720588235 0.720588235 0.720588235 0.720588235
The Shard 0.460992908 0.460992908 0.460992908 0.460992908

Metric 1
Citadel Gate 0.224489796 0.232142857 0.232142857 0.230300454
Overwatch 0.235294118 0.241830065 0.235294118 0.239651416
Sanctuary Bridge 0.307692308 0.301282051 0.301282051 0.298789174
Riverfort 0.53968254 0.555555556 0.53968254 0.555555556
Highfort 0.485294118 0.470588235 0.485294118 0.466503268
The Shard 0.290780142 0.312056738 0.29787234 0.298266351

Metric 2
Citadel Gate 0.227040816 0.237244898 0.234693878 0.232426304
Overwatch 0.235294118 0.248366013 0.235294118 0.241466957
Sanctuary Bridge 0.307692308 0.294871795 0.301282051 0.296296296
Riverfort 0.587301587 0.587301587 0.571428571 0.574074074
Highfort 0.485294118 0.455882353 0.485294118 0.465686275
The Shard 0.276595745 0.312056738 0.29787234 0.295902285

Metric 3
Citadel Gate 0.224489796 0.232142857 0.232142857 0.230300454
Overwatch 0.235294118 0.241830065 0.235294118 0.239651416
Sanctuary Bridge 0.307692308 0.301282051 0.301282051 0.298789174
Riverfort 0.53968254 0.555555556 0.53968254 0.555555556
Highfort 0.485294118 0.470588235 0.485294118 0.466503268
The Shard 0.290780142 0.312056738 0.29787234 0.298266351

Metric 4
Citadel Gate 0.204081633 0.221938776 0.204081633 0.209608844
Overwatch 0.196078431 0.176470588 0.196078431 0.184822077
Sanctuary Bridge 0.262820513 0.25 0.217948718 0.238960114
Riverfort 0.412698413 0.46031746 0.571428571 0.427689594
Highfort 0.323529412 0.367647059 0.323529412 0.339052288
The Shard 0.290780142 0.269503546 0.24822695 0.247832939

149

Figure .19: Playthrough Prediction Training Accuracies (Method 2 — Binary).

(t, t', t'', κ₁, κ₂) (2, 20, 60, 20, 6) (2, 20, 50, 22, 7) (4, 10, 50, 22, 4) (6, 10, 40, 12, 7) (6, 10, 40, 19, 6)

Baseline
Citadel Gate 0.581325301 0.581325301 0.581325301 0.581709145 0.581709145
Overwatch 0.54884742 0.549342105 0.549342105 0.549835706 0.549835706
Sanctuary Bridge 0.531701891 0.532222222 0.532222222 0.532150776 0.532150776
Riverfort 0.55 0.550440744 0.550440744 0.55078125 0.55078125
Highfort 0.542120912 0.542574257 0.542574257 0.542941757 0.542941757
The Shard 0.571888412 0.572347267 0.572347267 0.572649573 0.572649573

Metric 1
Citadel Gate 0.628012048 0.625 0.65060241 0.673163418 0.665667166
Overwatch 0.610318332 0.594298246 0.625 0.621029573 0.635268346
Sanctuary Bridge 0.604004449 0.587777778 0.637777778 0.630820399 0.657427938
Riverfort 0.591176471 0.590597453 0.630754163 0.619140625 0.634765625
Highfort 0.575817641 0.608910891 0.627722772 0.650542942 0.639684107
The Shard 0.607296137 0.601286174 0.627009646 0.662393162 0.616452991

Metric 2
Citadel Gate 0.629518072 0.628012048 0.649096386 0.673163418 0.650674663
Overwatch 0.605927552 0.606359649 0.621710526 0.61007667 0.628696605
Sanctuary Bridge 0.588431591 0.58 0.64 0.628603104 0.650776053
Riverfort 0.580392157 0.593535749 0.621939275 0.620117188 0.629882813
Highfort 0.581764123 0.597029703 0.627722772 0.656465943 0.633761106
The Shard 0.608369099 0.59807074 0.628081458 0.663461538 0.612179487

Metric 3
Citadel Gate 0.628012048 0.623493976 0.649096386 0.671664168 0.665667166
Overwatch 0.610318332 0.594298246 0.625 0.621029573 0.635268346
Sanctuary Bridge 0.605116796 0.587777778 0.638888889 0.630820399 0.65631929
Riverfort 0.591176471 0.590597453 0.630754163 0.619140625 0.634765625
Highfort 0.575817641 0.608910891 0.627722772 0.649555775 0.639684107
The Shard 0.607296137 0.602357985 0.627009646 0.663461538 0.616452991

Metric 4
Citadel Gate 0.579819277 0.606927711 0.603915663 0.580209895 0.580209895
Overwatch 0.602634468 0.584429825 0.605263158 0.56407448 0.577217963
Sanctuary Bridge 0.590656285 0.577777778 0.62 0.576496674 0.611973392
Riverfort 0.585294118 0.576885406 0.597453477 0.568359375 0.583984375
Highfort 0.575817641 0.59009901 0.599009901 0.589338598 0.583415597
The Shard 0.604077253 0.588424437 0.617363344 0.592948718 0.567307692

150

(t, t', t'', κ₁, κ₂) (6, 16, 50, 12, 3) (4, 20, 40, 24, 5) (6, 10, 60, 20, 10) (6, 10, 40, 12, 3) (2, 20, 50, 16, 7)

Baseline
Citadel Gate 0.581325301 0.581709145 0.581325301 0.581709145 0.581325301
Overwatch 0.549342105 0.549835706 0.54884742 0.549835706 0.549342105
Sanctuary Bridge 0.532222222 0.532150776 0.531701891 0.532150776 0.532222222
Riverfort 0.550440744 0.55078125 0.55 0.55078125 0.550440744
Highfort 0.542574257 0.542941757 0.542120912 0.542941757 0.542574257
The Shard 0.572347267 0.572649573 0.571888412 0.572649573 0.572347267

Metric 1
Citadel Gate 0.593373494 0.584707646 0.628012048 0.604197901 0.614457831
Overwatch 0.563596491 0.56736035 0.575192097 0.56626506 0.592105263
Sanctuary Bridge 0.56 0.535476718 0.556173526 0.557649667 0.598888889
Riverfort 0.564152791 0.557617188 0.579411765 0.571289063 0.598432909
Highfort 0.547524752 0.559723593 0.580773043 0.562685094 0.60990099
The Shard 0.573419078 0.572649573 0.592274678 0.588675214 0.59807074

Metric 2
Citadel Gate 0.590361446 0.583208396 0.626506024 0.607196402 0.615963855
Overwatch 0.557017544 0.557502738 0.576289791 0.556407448 0.604166667
Sanctuary Bridge 0.546666667 0.525498891 0.557285873 0.557649667 0.586666667
Riverfort 0.554358472 0.55859375 0.579411765 0.564453125 0.605288932
Highfort 0.557425743 0.544916091 0.581764123 0.554787759 0.592079208
The Shard 0.576634512 0.572649573 0.597639485 0.588675214 0.592711683

Metric 3
Citadel Gate 0.593373494 0.584707646 0.628012048 0.604197901 0.614457831
Overwatch 0.563596491 0.56736035 0.575192097 0.56626506 0.592105263
Sanctuary Bridge 0.56 0.535476718 0.556173526 0.557649667 0.597777778
Riverfort 0.564152791 0.557617188 0.579411765 0.571289063 0.598432909
Highfort 0.547524752 0.559723593 0.579781962 0.562685094 0.608910891
The Shard 0.573419078 0.572649573 0.592274678 0.588675214 0.59807074

Metric 4
Citadel Gate 0.59186747 0.574212894 0.542168675 0.586206897 0.59186747
Overwatch 0.557017544 0.559693319 0.531284303 0.552026287 0.588815789
Sanctuary Bridge 0.552222222 0.533259424 0.536151279 0.544345898 0.577777778
Riverfort 0.554358472 0.556640625 0.530392157 0.55859375 0.591576885
Highfort 0.556435644 0.553800592 0.533201189 0.544916091 0.584158416
The Shard 0.575562701 0.572649573 0.557939914 0.573717949 0.593783494

151

(t, t', t'', κ₁, κ₂) (2, 20, 50, 10, 3) (2, 20, 50, 16, 6) (2, 20, 50, 24, 5) (2, 20, 50, 22, 5) (2, 20, 50, 22, 8)

Baseline
Citadel Gate 0.581325301 0.581325301 0.581325301 0.581325301 0.581325301
Overwatch 0.549342105 0.549342105 0.549342105 0.549342105 0.549342105
Sanctuary Bridge 0.532222222 0.532222222 0.532222222 0.532222222 0.532222222
Riverfort 0.550440744 0.550440744 0.550440744 0.550440744 0.550440744
Highfort 0.542574257 0.542574257 0.542574257 0.542574257 0.542574257
The Shard 0.572347267 0.572347267 0.572347267 0.572347267 0.572347267

Metric 1
Citadel Gate 0.581325301 0.596385542 0.59939759 0.602409639 0.614457831
Overwatch 0.567982456 0.582236842 0.578947368 0.577850877 0.596491228
Sanctuary Bridge 0.55 0.566666667 0.55 0.548888889 0.582222222
Riverfort 0.565132223 0.571988247 0.571988247 0.565132223 0.589618022
Highfort 0.555445545 0.579207921 0.575247525 0.573267327 0.589108911
The Shard 0.59056806 0.586280815 0.585209003 0.587352626 0.617363344

Metric 2
Citadel Gate 0.581325301 0.594879518 0.593373494 0.602409639 0.620481928
Overwatch 0.564692982 0.575657895 0.57127193 0.565789474 0.591008772
Sanctuary Bridge 0.532222222 0.566666667 0.537777778 0.55 0.584444444
Riverfort 0.568070519 0.565132223 0.567091087 0.565132223 0.581782566
Highfort 0.558415842 0.581188119 0.571287129 0.57029703 0.589108911
The Shard 0.59056806 0.588424437 0.588424437 0.591639871 0.59807074

Metric 3
Citadel Gate 0.581325301 0.596385542 0.59939759 0.602409639 0.614457831
Overwatch 0.567982456 0.581140351 0.578947368 0.577850877 0.596491228
Sanctuary Bridge 0.55 0.566666667 0.548888889 0.548888889 0.582222222
Riverfort 0.565132223 0.571988247 0.571988247 0.565132223 0.589618022
Highfort 0.555445545 0.578217822 0.575247525 0.574257426 0.589108911
The Shard 0.59056806 0.584137192 0.585209003 0.587352626 0.617363344

Metric 4
Citadel Gate 0.581325301 0.578313253 0.570783133 0.576807229 0.582831325
Overwatch 0.563596491 0.575657895 0.574561404 0.567982456 0.58004386
Sanctuary Bridge 0.546666667 0.565555556 0.54 0.553333333 0.581111111
Riverfort 0.567091087 0.571008815 0.567091087 0.562193928 0.569049951
Highfort 0.557425743 0.576237624 0.571287129 0.574257426 0.576237624
The Shard 0.59056806 0.578778135 0.588424437 0.588424437 0.594855305

152

(t, t', t'', κ₁, κ₂) (2, 20, 50, 22, 9) (2, 20, 50, 23, 7) (2, 20, 50, 21, 7) Mean

Baseline
Citadel Gate 0.581325301 0.581325301 0.581325301 0.5814106
Overwatch 0.549342105 0.549342105 0.549342105 0.549396829
Sanctuary Bridge 0.532222222 0.532222222 0.532222222 0.532148531
Riverfort 0.550440744 0.550440744 0.550440744 0.550467441
Highfort 0.542574257 0.542574257 0.542574257 0.542605552
The Shard 0.572347267 0.572347267 0.572347267 0.572363462

Metric 1
Citadel Gate 0.640060241 0.644578313 0.629518072 0.620851472
Overwatch 0.628289474 0.605263158 0.609649123 0.594285794
Sanctuary Bridge 0.593333333 0.578888889 0.588888889 0.582493668
Riverfort 0.6043095 0.58863859 0.589618022 0.58798684
Highfort 0.614851485 0.599009901 0.594059406 0.591304658
The Shard 0.620578778 0.59807074 0.59807074 0.601278972

Metric 2
Citadel Gate 0.635542169 0.631024096 0.629518072 0.619014163
Overwatch 0.626096491 0.606359649 0.594298246 0.589962813
Sanctuary Bridge 0.575555556 0.573333333 0.582222222 0.575766708
Riverfort 0.607247796 0.599412341 0.579823702 0.585648094
Highfort 0.623762376 0.597029703 0.59009901 0.589383594
The Shard 0.603429796 0.602357985 0.602357985 0.600208117

Metric 3
Citadel Gate 0.638554217 0.644578313 0.628012048 0.620433508
Overwatch 0.628289474 0.605263158 0.609649123 0.594224877
Sanctuary Bridge 0.593333333 0.577777778 0.588888889 0.582370417
Riverfort 0.6043095 0.58863859 0.589618022 0.58798684
Highfort 0.614851485 0.600990099 0.594059406 0.591249761
The Shard 0.620578778 0.59807074 0.59807074 0.601278781

Metric 4
Citadel Gate 0.61746988 0.593373494 0.587349398 0.584758825
Overwatch 0.597587719 0.587719298 0.589912281 0.575528808
Sanctuary Bridge 0.568888889 0.564444444 0.582222222 0.567937942
Riverfort 0.584720862 0.57884427 0.569049951 0.570699366
Highfort 0.600990099 0.579207921 0.582178218 0.573778581
The Shard 0.581993569 0.59056806 0.589496249 0.585937963

153

Figure .20: Playthrough Prediction Test Accuracies (Method 2 — Binary).

(t, t', t'', κ₁, κ₂) (2, 20, 60, 20, 6) (2, 20, 50, 22, 7) (4, 10, 50, 22, 4) (6, 10, 40, 12, 7) (6, 10, 40, 19, 6)

Baseline
Citadel Gate 0.528061224 0.528061224 0.528061224 0.528061224 0.528061224
Overwatch 0.594771242 0.594771242 0.594771242 0.594771242 0.594771242
Sanctuary Bridge 0.666666667 0.666666667 0.666666667 0.666666667 0.666666667
Riverfort 0.603174603 0.603174603 0.603174603 0.603174603 0.603174603
Highfort 0.720588235 0.720588235 0.720588235 0.720588235 0.720588235
The Shard 0.460992908 0.460992908 0.460992908 0.460992908 0.460992908

Metric 1
Citadel Gate 0.489795918 0.477040816 0.474489796 0.50255102 0.494897959
Overwatch 0.424836601 0.437908497 0.418300654 0.418300654 0.45751634
Sanctuary Bridge 0.435897436 0.423076923 0.429487179 0.416666667 0.397435897
Riverfort 0.523809524 0.53968254 0.492063492 0.476190476 0.444444444
Highfort 0.455882353 0.397058824 0.382352941 0.441176471 0.397058824
The Shard 0.539007092 0.588652482 0.553191489 0.567375887 0.588652482

Metric 2
Citadel Gate 0.489795918 0.482142857 0.474489796 0.50255102 0.49744898
Overwatch 0.424836601 0.418300654 0.424836601 0.424836601 0.450980392
Sanctuary Bridge 0.442307692 0.416666667 0.435897436 0.403846154 0.378205128
Riverfort 0.53968254 0.53968254 0.53968254 0.492063492 0.476190476
Highfort 0.441176471 0.411764706 0.367647059 0.455882353 0.382352941
The Shard 0.553191489 0.574468085 0.546099291 0.567375887 0.581560284

Metric 3
Citadel Gate 0.489795918 0.477040816 0.474489796 0.50255102 0.494897959
Overwatch 0.424836601 0.437908497 0.418300654 0.418300654 0.45751634
Sanctuary Bridge 0.435897436 0.423076923 0.429487179 0.416666667 0.397435897
Riverfort 0.523809524 0.53968254 0.492063492 0.476190476 0.444444444
Highfort 0.455882353 0.397058824 0.382352941 0.441176471 0.397058824
The Shard 0.539007092 0.588652482 0.553191489 0.567375887 0.588652482

Metric 4
Citadel Gate 0.479591837 0.464285714 0.464285714 0.482142857 0.477040816
Overwatch 0.392156863 0.392156863 0.392156863 0.39869281 0.411764706
Sanctuary Bridge 0.384615385 0.391025641 0.371794872 0.371794872 0.326923077
Riverfort 0.46031746 0.46031746 0.46031746 0.396825397 0.444444444
Highfort 0.382352941 0.397058824 0.352941176 0.426470588 0.323529412
The Shard 0.524822695 0.510638298 0.517730496 0.553191489 0.517730496

154

(t, t', t'', κ₁, κ₂) (6, 16, 50, 12, 3) (4, 20, 40, 24, 5) (6, 10, 60, 20, 10) (6, 10, 40, 12, 3) (2, 20, 50, 16, 7)

Baseline
Citadel Gate 0.528061224 0.528061224 0.528061224 0.528061224 0.528061224
Overwatch 0.594771242 0.594771242 0.594771242 0.594771242 0.594771242
Sanctuary Bridge 0.666666667 0.666666667 0.666666667 0.666666667 0.666666667
Riverfort 0.603174603 0.603174603 0.603174603 0.603174603 0.603174603
Highfort 0.720588235 0.720588235 0.720588235 0.720588235 0.720588235
The Shard 0.460992908 0.460992908 0.460992908 0.460992908 0.460992908

Metric 1
Citadel Gate 0.474489796 0.487244898 0.492346939 0.489795918 0.477040816
Overwatch 0.444444444 0.509803922 0.431372549 0.444444444 0.444444444
Sanctuary Bridge 0.423076923 0.467948718 0.397435897 0.423076923 0.416666667
Riverfort 0.46031746 0.492063492 0.444444444 0.507936508 0.523809524
Highfort 0.367647059 0.470588235 0.323529412 0.382352941 0.397058824
The Shard 0.539007092 0.553191489 0.574468085 0.531914894 0.574468085

Metric 2
Citadel Gate 0.474489796 0.487244898 0.492346939 0.489795918 0.479591837
Overwatch 0.437908497 0.503267974 0.437908497 0.444444444 0.437908497
Sanctuary Bridge 0.41025641 0.455128205 0.397435897 0.429487179 0.403846154
Riverfort 0.46031746 0.492063492 0.444444444 0.492063492 0.53968254
Highfort 0.382352941 0.441176471 0.323529412 0.382352941 0.382352941
The Shard 0.539007092 0.553191489 0.567375887 0.524822695 0.553191489

Metric 3
Citadel Gate 0.474489796 0.487244898 0.492346939 0.489795918 0.477040816
Overwatch 0.444444444 0.509803922 0.431372549 0.444444444 0.444444444
Sanctuary Bridge 0.423076923 0.467948718 0.397435897 0.423076923 0.416666667
Riverfort 0.46031746 0.492063492 0.444444444 0.507936508 0.523809524
Highfort 0.367647059 0.470588235 0.323529412 0.382352941 0.397058824
The Shard 0.539007092 0.553191489 0.574468085 0.531914894 0.574468085

Metric 4
Citadel Gate 0.466836735 0.471938776 0.471938776 0.474489796 0.466836735
Overwatch 0.385620915 0.431372549 0.366013072 0.39869281 0.39869281
Sanctuary Bridge 0.378205128 0.403846154 0.371794872 0.378205128 0.391025641
Riverfort 0.428571429 0.412698413 0.396825397 0.46031746 0.492063492
Highfort 0.352941176 0.426470588 0.338235294 0.323529412 0.382352941
The Shard 0.510638298 0.510638298 0.531914894 0.503546099 0.539007092

155

(t, t', t'', κ₁, κ₂) (2, 20, 50, 10, 3) (2, 20, 50, 16, 6) (2, 20, 50, 24, 5) (2, 20, 50, 22, 5) (2, 20, 50, 22, 8)

Baseline
Citadel Gate 0.528061224 0.528061224 0.528061224 0.528061224 0.528061224
Overwatch 0.594771242 0.594771242 0.594771242 0.594771242 0.594771242
Sanctuary Bridge 0.666666667 0.666666667 0.666666667 0.666666667 0.666666667
Riverfort 0.603174603 0.603174603 0.603174603 0.603174603 0.603174603
Highfort 0.720588235 0.720588235 0.720588235 0.720588235 0.720588235
The Shard 0.460992908 0.460992908 0.460992908 0.460992908 0.460992908

Metric 1
Citadel Gate 0.487244898 0.487244898 0.487244898 0.484693878 0.482142857
Overwatch 0.424836601 0.45751634 0.437908497 0.444444444 0.418300654
Sanctuary Bridge 0.429487179 0.403846154 0.403846154 0.41025641 0.429487179
Riverfort 0.523809524 0.492063492 0.507936508 0.507936508 0.571428571
Highfort 0.455882353 0.367647059 0.411764706 0.411764706 0.426470588
The Shard 0.524822695 0.524822695 0.524822695 0.546099291 0.496453901

Metric 2
Citadel Gate 0.487244898 0.484693878 0.484693878 0.479591837 0.471938776
Overwatch 0.418300654 0.444444444 0.444444444 0.444444444 0.392156863
Sanctuary Bridge 0.429487179 0.397435897 0.416666667 0.41025641 0.423076923
Riverfort 0.523809524 0.492063492 0.492063492 0.492063492 0.571428571
Highfort 0.455882353 0.382352941 0.441176471 0.411764706 0.426470588
The Shard 0.531914894 0.524822695 0.517730496 0.553191489 0.503546099

Metric 3
Citadel Gate 0.487244898 0.487244898 0.487244898 0.484693878 0.479591837
Overwatch 0.424836601 0.45751634 0.437908497 0.444444444 0.418300654
Sanctuary Bridge 0.429487179 0.403846154 0.403846154 0.41025641 0.429487179
Riverfort 0.523809524 0.492063492 0.507936508 0.507936508 0.571428571
Highfort 0.455882353 0.367647059 0.411764706 0.411764706 0.426470588
The Shard 0.524822695 0.524822695 0.524822695 0.546099291 0.496453901

Metric 4
Citadel Gate 0.471938776 0.471938776 0.474489796 0.464285714 0.469387755
Overwatch 0.385620915 0.385620915 0.385620915 0.39869281 0.385620915
Sanctuary Bridge 0.365384615 0.397435897 0.384615385 0.384615385 0.378205128
Riverfort 0.476190476 0.492063492 0.46031746 0.428571429 0.444444444
Highfort 0.397058824 0.411764706 0.411764706 0.397058824 0.441176471
The Shard 0.496453901 0.503546099 0.539007092 0.531914894 0.510638298

156

(t, t', t'', κ₁, κ₂) (2, 20, 50, 22, 9) (2, 20, 50, 23, 7) (2, 20, 50, 21, 7) Mean

Baseline
Citadel Gate 0.528061224 0.528061224 0.528061224 0.528061224
Overwatch 0.594771242 0.594771242 0.594771242 0.594771242
Sanctuary Bridge 0.666666667 0.666666667 0.666666667 0.666666667
Riverfort 0.603174603 0.603174603 0.603174603 0.603174603
Highfort 0.720588235 0.720588235 0.720588235 0.720588235
The Shard 0.460992908 0.460992908 0.460992908 0.460992908

Metric 1
Citadel Gate 0.477040816 0.489795918 0.492346939 0.485969388
Overwatch 0.450980392 0.437908497 0.450980392 0.441902687
Sanctuary Bridge 0.423076923 0.416666667 0.416666667 0.42022792
Riverfort 0.492063492 0.53968254 0.492063492 0.501763668
Highfort 0.397058824 0.426470588 0.397058824 0.406045752
The Shard 0.524822695 0.560283688 0.574468085 0.549251379

Metric 2
Citadel Gate 0.479591837 0.489795918 0.494897959 0.485685941
Overwatch 0.444444444 0.431372549 0.431372549 0.436456064
Sanctuary Bridge 0.423076923 0.397435897 0.416666667 0.415954416
Riverfort 0.492063492 0.53968254 0.523809524 0.507936508
Highfort 0.382352941 0.441176471 0.426470588 0.407679739
The Shard 0.517730496 0.567375887 0.560283688 0.546493302

Metric 3
Citadel Gate 0.477040816 0.489795918 0.492346939 0.485827664
Overwatch 0.450980392 0.437908497 0.450980392 0.441902687
Sanctuary Bridge 0.423076923 0.416666667 0.416666667 0.42022792
Riverfort 0.492063492 0.53968254 0.492063492 0.501763668
Highfort 0.397058824 0.426470588 0.397058824 0.406045752
The Shard 0.524822695 0.560283688 0.574468085 0.549251379

Metric 4
Citadel Gate 0.469387755 0.489795918 0.477040816 0.472647392
Overwatch 0.392156863 0.418300654 0.379084967 0.394335512
Sanctuary Bridge 0.397435897 0.358974359 0.391025641 0.379273504
Riverfort 0.412698413 0.476190476 0.46031746 0.447971781
Highfort 0.426470588 0.455882353 0.382352941 0.390522876
The Shard 0.510638298 0.531914894 0.517730496 0.520094563

157

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Research Problem Overview
	Aims & Objectives
	Industrial Context
	Research Outputs
	Document Roadmap

	Literature Review
	Modelling Player Experience
	Qualitative Approaches
	Quantitative Approaches

	Evaluating Levels — the Sentient Sketchbook
	Weakly Supervised Learning

	Experimental Design
	The Game
	Requirements
	Description

	Data Collection
	Playthroughs
	User Feedback

	Methodology
	Feature Representation
	Player Motion
	Local Geometry
	Zero-meaning & Clustering
	Player Actions & Clustering

	Moment Detection — Weakly Supervised Learning
	Multiple Instance Learning
	Model Training
	Predicting Playthrough Feedback

	Moment Detection — Probabilistic Regression Ensemble
	Further Clustering
	Cluster Voting for Predicting Playthrough Feedback
	Model Training for Level Evaluation

	Heat Map Generation
	Algorithm Performance

	Results and Discussion
	Evaluating Maps
	Predicting Playthrough Feedback

	Conclusion
	Limitations
	Extensions
	Impact
	Outlook

	Appendix A — User Study Instructions
	Appendix B — Summarised User Feedback
	Appendix C — Genetic Algorithm Implementation
	Appendix D — Negative Dirichlet Loss
	Appendix E — Preliminary Map Evaluation Results by Geometry Capture Metric
	Appendix F — Full Results

