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1 BASELINE ALGORITHMS

In this document we provide further results of compar-
isons between our system and Wu et al.’s VisualSFM [1],
[2], Viewfinder Alignment (VfA) of Adams et al. [3], a
“micro-SfM” method which computes a 2D translation
using SIFT matching with RANSAC, and direct (all-
pixel) methods as summarised by Szeliski [4]. For each
baseline algorithm we have the capability to load the
output into our viewer for qualitative comparison. To
load VisualSfM’s output of 6d.o.f. camera positions into
the Swipe Mosaic viewer we project each camera to a
location & orientation on the 2D plane. We do this by
computing a normal vector from the average “forward”
direction over all cameras, then projecting each camera
perpendicularly onto a plane defined by this normal. The
location on this plane gives a 2D coordinate to be loaded
into the viewer (see main paper).

1.1 Direct Methods

An excellent summary of techniques for Image Align-
ment and Stitching was presented by Szeliski [4]. Chap-
ter 3, “Direct (pixel-based) alignment”, details a number
of methods to compute a 2D alignment between image
pairs. The general approach is to define some error
metric which can evaluate how well each potential 2D
alignment matches the contents of each image. Given the
error metric, one can exhaustively evaluate all possible
alignments, or use a coarse to fine method to limit the
amount of computation, and the alignment which pro-
duces the lowest error is chosen. Various error metrics
can be defined on overlapping pixels, such as Sum of
Square Differences or Sum of Absolute Differences. We
compare to the popular method of Normalized Cross
Correlation (NCC), which we also used as the basis of
our feature vector computation. NCC is an improvement
over improves over Cross Correlation (which has a
tendency to give incorrect offets in the presence of large
high intensity areas) by normalising the overall intensity
of each of the regions being compared. However, as
noted by Szeliski, “[NCC’s] performance degrades for noisy
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low-contrast regions” so the improved technique is not
immune to problems.

Two temporally adjacent frames (Fig. 1a and Fig. 1b)
from the PRISM sequence were selected. Some scene ge-
ometry is visible on the left of the image, but most of the
pixels have been overloaded by the bright light and are
reporting close to perfect white. Nevertheless, it is clear
that horizontal camera motion has taken place, given the
parts of the geometry which we can see. The NCC image
computed in MATLAB is shown in Fig. 1c. Two closeups
of the region around the peak are shown in Fig. 1d and
Fig. 1e. Note that the right hand peak in Fig. 1d has
a higher NCC value, but the location (768, 432) implies
that zero translation is the optimal image alignment. The
left hand peak in Fig. 1e has a slightly lower magnitude,
but the offset (679, 432) indicates a horizontal offset of
(768−679)/2 = 39. Indeed, a translational shift of (39, 0)
does bring the two images into good alignment. Our
RRF based system produced an estimate with mean
(0.0169, 0.0004) and variance (0.00132, 0.00168) for these
images (note these results are not in units of pixels as
above, so cannot be directly compared), showing primar-
ily horizontal motion with roughly isotropic variance, as
we would expect from the fact that the visible texture in
the image confirms no vertical motion has taken place.
Any algorithm which simply computes NCC over entire
images, finds the single peak and uses the value will
be prone to fail in image pairs such as this, whereas
our system produces a translation in the correct di-
rection. Note that un-normalized Cross Correlation for
this image actually produced a purely vertical translation,
reinforcing the idea that un-normalized cross correlation
is unsuitable for large high intensity regions, performing
even worse than NCC.

Our method returns a distribution over possible cam-
era motion, which is a great advantage in cases of
ambiguity such as repeated structure. Fig. 2 shows
how in the presence of multiple potential alignment
Another example of how our method is superior to
NCC is in shown in Fig. 2. When repeated structure
creates a number of possible alignments, our method
(Fig. 2d) returns an anisotropic estimate compared to
the deterministic estimate provided by NCC (Fig. 2c).
Corresponding repeated structure is shown in the NCC
response image; the peak happens to be located in a
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(a) PRISM frame 165 (b) PRISM frame 166
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(c) NCC result from MATLAB NORMX-
CORR2 between images
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(d) Primary peak (greatest NCC value)
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(e) Secondary peak (lower NCC value)

Fig. 1: NCC failing to compute the correct offset for two frames in PRISM. Black borders added to top images for
clarity.

ridge which indicates slight upward motion (as well as
rightwards). The vertically adjacent ridges have similar
NCC values and (given the magnitude of the camera
motion between the images) are surely almost as likely.
However the single transformation returned by pure
NCC alignment will not represent this information at
all. The result from our method is more desirable in this
situation.

1.2 Structure from Motion: VisualSfM

We selected the SCULPTURE (Fig. 3a) and LEAVES (Fig. 3b)
sequences as likely to cause SfM failure. SCULPTURE in-
cludes specularities, motion blur, and has few suitable
corners for interest point detection. LEAVES contains lots of
geometry suitable for interest point detection, but most
of these areas are on leaves, which are being blown
around in the wind, meaning points detected on them
may adversely contribute to the optimisation.

VisualSfM was run on each sequence in both ordered
and unordered mode. This mode affects which image
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(a) Image A (b) Image B
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(d) Distribution returned by
our method.

Fig. 2: NCC computes a large diagonal offset for 2 frames containing repeated structure. The white line in c) connects
the NCC peak with the location which would represent zero offset

pairs are compared to find interest points; either all pairs
(unordered) or only temporally adjacent pairs (ordered).
Running unordered on SCULPTURE, 38 camera locations
were reconstructed from the 101 input images, leading
to an incomplete Swipe Mosaic. Running ordered mode
yields an even worse result, reconstructing 35 camera
locations but in three independent groups. The locations
that VisualSfM did produce were accurate, but the full
camera path produced by our system is preferable, as
shown in Fig. 4.

(a) SCULPTURE (b) LEAVES

Fig. 3: Screenshots in the Swipe Mosaic interface of the datasets
on which we compare our performance to SfM. The minimap in the
bottom right shows the camera locations.

The LEAVES dataset consist of 201 images. VisualSfM
in ordered mode computed locations for only 70 of the
images, albeit producing a reasonable Swipe Mosaic.
Running SfM in unordered mode computes a location
for all the images, but the placement undergoes a catas-
trophic failure, with the resulting Swipe Mosaic suffering
severe artifacts. The failure takes the form of one side
of the horizontal path being relatively correct, and the
image locations gradually worsening as we travel along
the video timeline, until the predicted image locations
do not even overlap (see supplemental video). For both
the sequences in this section, our system produced easily
navigable locations for all cameras (see video and Fig. 3).
We surmise that unordered mode producing better re-
sults in this case was due to a greater variety of image
pairs being run through SIFT matching, rather than
merely a few temporal neighbors. If a several consec-
utive frames of video are blurred or contain confusing
motion, unordered mode will still be able to search
for SIFT matches between frames “either side” of the
problem area, thus providing a more robust solution.
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Fig. 4: 2D camera coordinates (unitless) for SCULPTURE produced by
our system (left) and VisualSFM (right). Blue points indicate images
where both systems gave an estimate of location (note the estimates
differ); red points are images where only our system produced an
estimate. Note the obvious outlier at the top of the SfM result.

1.3 µSfM

“micro-SfM” or “µSfM” is a system which we have
developed with the intention of it being an equivalent
system to SfM, but without computing any structure,
and with camera transforms limited to 2D translation.
The thinking behind this is that computing a 6D quan-
tity for each frame is an inherently harder task than
computing a 2D quantity for each frame, and so simply
comparing our 2D RRF method to VisualSfM was not a
fair comparison. Rather, we should apply the technique
from VisualSfM to the strictly easier problem of com-
puting translations (not fundamental matrices) in order
to compare like-for-like results. “µSfM” matches two
images by generating SIFT descriptors and performing
matching using the standard algorithm of Lowe [5]. A
translation is computed using RANSAC to iteratively
select a random SIFT match, compute the corresponding
2D transform and count the number of inliers. The
transform with the highest inlier count is used to gen-
erate a final refined transform from the entire inlier
set. To combine multiple translation estimates across an
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Fig. 5: Regularized locations for the VINYL scene, for the images which
straddle the obstruction. Dots represent image locations and the line
joins them in temporal order. Larger dots show the start and end of this
subsequence. As the correct camera motion is approximately a constant
horizontal velocity, the ideal result would be equally spaced dots on
a horizontal line. Scale between the 3 diagrams is not meaningful. a):
µSfM result with unweighted regularization. b): µSfM with weighted
regularization. c): our system.

image sequence, we use the least-squares based layout
algorithm developed for our RRF estimates. As the lay-
out algorithm allows for a weighting to be applied to
each relative transform (in our main system we use the
inverse variance from the forest) we test two versions
of µSfM - one unweighted, and one weighted using
the ratio of inliers to total number of matches found
when generating the transform. This should ensure that
translations for which every single SIFT match agrees
are given more weight by the optimisation.

Considering the simplicity of the method, µSfM is
surprisingly capable. In particularly, it can produce just
as good a camera path for the LEAVES sequence as our
technique. However as the method relies entirely on
interest point matching, we know it is susceptible to
fail in the presence textureless regions, motion blur or
repeated structure. The VINYL sequence contains a blurry
obstruction which is very close to the camera, separating
to regions containing strong texture information. The
camera travels horizontally, starting in one textured re-
gion, passing the obstruction (which takes up the whole
screen for a few frames) and ends viewing the second
textured region. Surprisingly, inside the (apparently)
textureless region, SIFT is able to detect a few interest
points. Matching these interest points prooves difficult
however; most of them have extremely similar appear-
ances, and despite implementing Lowe’s technique for
avoiding ambiguous matches, the translations returned
from the middle frames in this sequence were extremely
noisy. Note the results in Fig. 5, bearing in mind the
ideal answer would be almost pure horizontal motion.
Both µSfM results display problems with some frames
ending up at a large displacement to the lower right

corner of the map, with the subsequent frames on the
normal timeline. It can be seen that the weighted version
displays a smoother timeline at the beginning and end
of the sequence, but for both a) and b) the mistakes
in the middle of the sequence make this difficult to
navigate in our interface (frames displaying the obstruc-
tion are incorrectly displayed amongst the frames of
texture objects). By contrast our result, c), whilst by no
means perfect, is a vast improvement on both µSfM
results. For the images where texture is available it
computes a consistent horizontal motion. For the frames
containing no texture, there is insufficient information
to state which (if any) direction the camera has moved,
so our system returns a number of zero mean, wide
variance offsets. The optimisation places these roughly
on top of each other, generating the point cluster in
the result. Obviously this is not actually correct, as the
camera was always moving, but as there is no way
to tell this simply from the images pairs we produce
a reasonable result, which allows the sequence to be
browsed as a Swipe Mosaic without artifacts. It may
be possible to improve this aspect of the system by
using a camera motion model in the layout algorithm,
meaning that when we knew the first few frames had
the camera move to the right, then when presented with
insufficient visual information our estimate would be
some kind of rightwards motion, rather than zero mean
motino. Another failure case for µSfM was PRISM, where
the camera autogain causes whiteout for a few frames.
Similarly to the previous sequence, no reliable feature
matches could be detected during this central part of
the image sequence, leading to incorrect matches in the
middle of the sequence again.

1.4 Viewfinder Alignment

Our final baseline comparison is to Viewfinder Align-
ment (VfA) of Adams et al. [3] . VfA is a method
to compute constrained transforms between temporally
close video frames. VfA computes a “digest” for each
frame by encoding edge information at 4 equally spaced
orientations using gradient integral projection arrays, as
well as detecting the top k peaks in the image. Two
image digests are aligned by first calculating a single
2D shift which best aligns the edge information stored
for each image. This 2D shift is applied to the detected
corners of one of the digests. The number of inliers (a
pair of points, one from each image, landing within 3
pixels from each other) between the two points sets is
counted and taken as the confidence that the images
have been aligned correctly. The set of inliers is used
to generate a similarity transform, giving 4 degrees of
freedom (translation, rotation and scale) between pairs
of frames. Note that our VfA test scenes were chosen
intentionally so that the rotation and scale change was
negligible so these parameters are ignored, i.e. we are
only interested in the relative accuracy of the translations
computed by different methods.. Experiments showed
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that when compute the scale change was typically be-
tween 0.98 and 1.02, and the rotation on the order of 0.1
radians, justifying this decision.

VfA has a number of attractive properties, including
computational efficiency and being extremely resistant
to noise. A disadvantage of the algorithm is that it is
completely deterministic, in that only one 2D translation
between each frame pair is considered, when the digest
edge information could be used to produce a distribution
of translations. Additionally, the corners returned from
the corner detector are simply stored as 2D locations,
without any kind of descriptor, allowing corners which
represent different scenes points to potentially be aligned
with each other and treated as an inlier. We compared
our system to our own re-implementation of VfA. This
code is supplied as supplemental material. We now
present detailed analysis of VfA on various test scenes.

All the sequences in this document were run through
our re-implementation of Viewfinder Alignment. We
tried to match each digest with the digests from other
images which were within 6 frames (forward or back-
wards). If a complete graph could be constructed, we
used all the inferred translation values as input to our
linear least squares regularization (see main paper). In-
lier matrices are shown using the standard Jet colormap,
except that pairs which either produced zero inliers or
were not compared (i.e. they were too far apart tempo-
rally) are left blank.

Successes
Lobby

Fig. 6: Sample Images from lobby sequence

The lobby sequence is largely featureless, but the ob-
jects that are seen display strong vertical and horizontal
edges, resulting in an excellent output when browsed as
a Swipe Mosaic.
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Fig. 7: number of inliers from lobby sequence

Fence

Fig. 8: Sample Images from fence sequence

The fence contains repeated structure with many sim-
ilar looking horizontal edges but VfA is robust to this,
producing a fully connected set of inliers (Fig. 9) and a
correct reconstruction.
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Fig. 9: number of inliers from fence sequence

Failure cases
Vinyl

Fig. 10: Sample images from vinyl sequence

The Vinyl sequence contains an obstruction which
does not trigger Viewfinder Alignment’s corner detec-
tion (Fig. 10). This causes a large region with zero
inliers (Fig. 11) which prevents the start and end of this
sequence from connecting to each other, and therefore
renders it impossible to create a single set of camera
paths to be loaded into our viewer.
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Fig. 11: number of inliers from vinyl sequence. Note two
separate “islands”

Grating

Fig. 12: Sample images from grating sequence

The Grating sequence is an interesting case because
it contains very easily localisable vertical edges but
relatively few unambiguous horizontal edges (Fig. 12).
Viewfinder Alignment finds sufficient transforms to reg-
ularise the 80 frame segment all together as one con-
nected cluster, leading a promising looking inliers graph
(Fig. 13). However, a small number of incorrect matches
corrupt the whole regularisation, resulting in final cam-
era locations shown in Fig. 14 and Fig. 15. The correct
arrangement should be a roughly straight vertical line.
It seems likely that the lack of strong horizontal edges
meant that when an incorrect alignment was proposed
and approved by the corner correspondence stage of
VfA. Corners are deemed as inliers based on whether
a given shift puts them on top of each other, not based
on any kind of descriptor based on the visual appearance
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Fig. 13: number of inliers from grating sequence

of whatever was originally detected as a corner.
In this situation potentially even adding corner de-

scriptors to the algorithm would not remedy the sit-
uation, because it seems like most corners are liable
to be detected on either the drain or the two grooves
next to it, and any hypothetical descriptor computed on
these locations is likely to be visually similar to another
descriptor computed somewhere else on the drain /
groove. The best movement cues in this scene are the
water stains on the floor, which are non-repeating, but
these are not captured well by the VFA digest.
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Fig. 14: Regularized camera locations for grating, un-
weighted. 0 is first frame, 79 is final frame.

2 FURTHER SWIPE MOSAIC RESULTS

2.1 Synthetic Satellite footage dataset
As well as the real video sequences, we converted a time-
lapse video of the Earth recorded from the International
Space Station into a Swipe Mosaic. We first constructed
an intermediate video by cropping out a thin horizontal
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Fig. 15: Regularized camera locations for grating,
weighted by inlier count. 0 is first frame, 79 is final
frame.

strip from the bottom of each image and splitting each
strip into eight overlapping images. A virtual camera
was moved back and forth along the strips, moving
forward in time upon reaching the end, to give these cut
up frames a nominal temporal ordering. We run pairwise
prediction, regularization and translational loop closure
on this sequence, and know that the images should
ideally be estimated to form a regular rectangular grid.

It is hoped each image would know from the trans-
lational RRF that their neighbors on the same strip
were at a purely horizontal offset, and neighbors on a
different strip were at a purely vertical offset. The output
of the first regularization step is shown in Fig. 17a.
The arrangement is approximately what we would have
hoped for, but the locations as a whole “lean” to one side.
This can be explained by noting that for the images at
either end of the strip, when the virtual camera moves
“up” or “down”, the overlapping pixel data between
the image at either end of this link will actually move
diagonally, because all the earth’s surface appears to be
moving away from the focus of expansion. Because the
strips were not symmetrically cropped (the main goal
of the cropping was to remove the visible parts of the
ISS which appeared in the frame, of which there was
more on one side) we see that the “up-down” links such
as (7, 15) push the entire system to the left to a greater
extent than the links on the other side such as 40, 48.

Ideally, our loop closure step should (with slightly
modified thresholds to account for the shorter loops
present in this artificial scene versus a real scene) detect
loop points between every image and its corresponding
vertical neighbors, i.e. link (0, 15), (1, 14), (2, 13) etc. After
incorporating a pairwise prediction from each and re-
regularizing, we would hope to see the same overall grid
structure, but with less of the horizontal skew visible in
Fig. 17a. The result of automatic loop closure is shown
in Fig. 17b. Loop points have been found in the majority
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Fig. 16: Example images from ISS sequence, from the right hand edge of the image grid. Note how structures travel
diagonally down to the right between frames - this is due to the curvature of the earth from the ISS’ vantage point.

of places we hoped to see them. The output is not
perfect but the transitions between, for example, images
3, 12 and 19 are closer to vertical than before the loop
closure, and so are correspondingly improved in the
visualization For this dataset, vertical would be the ideal
answer. Even with the imperfect results, the ISS sequence
is easy to navigate as a Swipe Mosaic.

(a) without loop closure

(b) with loop closure

Fig. 17: Loop closure on ISS. For this sequence only, the loop point
detection parameter was set to 10 to allow for shorter loops. Only
locations of the initial 64 frames are shown for clarity.

3 IMPLEMENTATION DETAILS

3.1 Gabor Filter Bank

As mentioned in the the Feature Computation section of
the main paper, a bank of Gabor filters are used as part of
the feature computation process. Each filter is computed
from the product of a Gaussian and a sinusoid, according
to (1).

g(x, y;λ, θ, σ, γ) = exp

(
− x̂2

2σ2
− ŷ2

2σ2
y

)
exp

(
2πx̂

λ

)
(1)

x̂ = x cos θ + y sin θ (2)
ŷ = −x sin θ + y cos θ (3)

σy =
σ

γ
(4)

(5)

λ represents the wavelength of the sinusoid, θ is the
orientation of the sinusoid (the orientation parameters
allows the detection of multimodal ridges at differ-
ent angles), σ represents the standard deviation of the
Gaussian, and γ controls how this standard deviation
varies in the x and y directions (ie creating an elliptical
function). The ranges of values used for these parameters
is specified in 1. For each configuraton of parameters,
the filter is created as wide (in pixels) as necessary to
encompass 3 standard deviations for the Gaussian.

λ θ σ γ
100 0 4 1
10 0, π

4
, . . . , 7

4
π 2 1

10 0, π
4
, . . . , 7

4
π 2 0.5

10 0, π
4
, . . . , 7

4
π 3 1

10 0, π
4
, . . . , 7

4
π 3 0.5

TABLE 1: Parameters used to generate the Gabor filter
bank.
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