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Swipe Mosaics from Video
Malcolm Reynolds, Tom S. F. Haines and Gabriel J. Brostow

Abstract—While a panoramic image mosaic is an attractive visualization for viewing many overlapping photos, its images must be
both captured and processed correctly to produce an acceptable composite. We propose Swipe Mosaics as an interactive visualization
that places the individual video frames on a 2D planar map that represents the layout of the physical scene. Compared to traditional
panoramic mosaics, our capture is easier because the user can both translate the camera center and film moving subjects. Our
processing and display also degrade gracefully if the footage lacks distinct, overlapping, non-repeating texture. Our proposed visual
odometry algorithm takes an image pair and produces a distribution over (x, y) translations. Inferring a distribution of possible camera
motions allows us to better cope with parallax, lack of texture, dynamic scenes, and other phenomena that hurt panoramic image
mosaics or deterministic reconstruction techniques. The visual odometry regressor gains this robustness by training on renderings
of synthetic scenes with known camera motion. We show that Swipe Mosaics are easy to generate, support a wide range of difficult
scenes, and are useful for documenting a scene for closer inspection.

F

1 INTRODUCTION

THE appeal of Microsoft’s Photosynth [1] is just one
indication of how people wish to capture environ-

ments for later navigation. Intuitive interactive naviga-
tion of video frames can mean more than just playing
them back in temporal order. Users often wish to navi-
gate the captured footage spatially. For certain dynamic
scenes, the works of [2], [3], [4], and [5] explored direct
manipulation of video. With interesting variations, those
algorithms mapped a user’s click-and-drag stroke to a
sequence of frames elsewhere in the timeline. The loca-
tion of the click and the direction of the mouse indicated
to the system which pixels and what point or optical flow
trajectory to query for in the whole sequence. We seek
a similar direct user interaction for spatial navigation of
scenes, which preserves the film’s points of view and the
veracity of the images. For example, imagine needing to
inspect the gold handbag in Fig. 1 to place a bid in an
online auction, or record scratches after a car accident.
Our system allows casually captured video footage of
the subject to be automatically converted, under some
simple assumptions, into a navigatable “Swipe Mosaic”.

When footage contains texture allowing for accurate
estimates of optical flow, or appropriate interest points
that allow for 2D or 3D pose estimation, then Image
Based Rendering (IBR) techniques can be used to com-
posite static or dynamic mosaics as set out by [6], or with
the vast majority of crowd-sourced images, browsing the
images in 3D as in [7] or [8]. Many everyday scenes
lack texture, or otherwise break the assumptions made
by current IBR and direct video manipulation systems.
Our proposed IBR approach deals with failing pose es-
timation more gracefully than other methods in difficult
scenes, yet the rendering quality and user interaction
do not suffer adversely. Towards the objective of intu-
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itively navigating video frames on ubiquitous devices,
we present the following contributions:
• A regressor model trained using a simple graphics

engine, that learns the relationship between image
pairs and their 2D Euclidean transform parameters.

• A layout method that uses the probabilistic pairwise
predictions from the regressor to produce a 2D
location for each image, and then tries to detect and
re-optimize loop-closures.

• A Swipe Mosaic interface, shown in Fig. 1, to dis-
play the video frames, allowing the user to perform
content centric navigation and inspection by “swip-
ing” scene elements. The interface can run as either
a native application or on a web browser, allowing
usage on smartphones.

In contrast to regular panoramic image mosaicing ap-
proaches, our system can analyze and visualize hand-
held camera footage with parallax, blur, textureless and
specular areas, and moving subjects, with the visualiza-
tion quality degrading gracefully in the case of especially
difficult scenes.

2 RELATED WORK

Since the genesis of Image Based Rendering for synthetic
data [9], steady progress has been made toward beautiful
and useful renderings from footage of the real world.
Footage usually comes from multiple viewpoints, so
progress is inherently dependent on having accurate es-
timates of relative camera poses. Here we summarize the
most relevant interactive IBR approaches, starting with
techniques for estimating the needed camera parameters.

Camera Poses: A comprehensive summary of meth-
ods for converting video frames into planar and cylindri-
cal mosaics is presented in [10], while [11] cover spheri-
cal mosaics. They explain how stitching an image mosaic
is easiest when all the images can be related to each
other by homographies. This relation can exist when the
camera is translated parallel to a planar scene, or when
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Fig. 1: Left: input videos containing “difficult” phenomena are used as inputs to our system. Right: the Swipe Mosaic interface allowing
navigation over an image sequence. We propose Swipe Mosaics as an algorithm and associated interface which composites video frames into a
content-centric navigable visualization. Some videos can already be browsed spatially by using existing mosaicing or IBR methods, our system
broadens the range of usable videos because it is trained to tolerate scene motion, parallax, repeated structure, and lack of texture.

undergoing pure rotation. Szeliski also motivates and
demonstrates robust ways of registering images to each
other without matching detected interest points, such as
through coarse-to-fine matching and phase correlation.
Such registration benefits from either manual or interest-
point based initialization, and assumes that the scene
is textured. Textured scenes ensure convergence when
minimizing the residual difference in the intensities of
overlapping pixels. Texture can also help when mosaic-
ing an image sequence, because optical flow is strongly
correlated with visual odometry [12]. [13] show that
estimating camera motion and warping to enforce a
consistent parallel optical flow direction allows one to
combine columns of pixels onto a 2D manifold, and
not necessarily onto a planar, cylindrical, or spherical
mosaic. Optical flow estimates are most accurate when
the scene is textured, and [14] have a helpful system
to compute the uncertainty of the estimated (u, v) flow
components. We too benefit from texture in the scene,
but are less reliant on it.

Initializing camera poses can be difficult in practice,
even in textured scenes. Hardware attached to the cam-
era can help [15], as demonstrated by [16] who fused
visual cues with gyroscope data and [17] who used an
inertial sensor to mitigate blur. [18] actively controlled
the camera pose using a motorized telescope mount
to stitch mosaics of thousands of photos. There are
numerous other hybrid systems which fuse other data
with images, but even [18], [19], and the Photosynth
App [1] rely on interest point matching to register their
images. The SIFT detection and features of [20] remain
the standard by which interest point detection and
matching is measured [21]. Finding enough matching
interest points in an image collection means that photos
can be registered to each other, adjusted for exposure,
and blended into a large mosaic [22]. At least four points
must be matched to compute the projective transform
between two images, but in practice 10’s and 100’s of
points are used with RANSAC [23] to robustly calculate
an answer. The same approach and inflated number
of distinct interest points is normal for estimating the
translation and rotation of the 2D Euclidean transform,
even though two corresponding points is enough, and

solutions with corresponding lines and curves also ex-
ist [24]. The key issues are that large areas of real
images have light or sparse texture, and that seemingly
corresponding points may not represent the same 3D
point in the world because of scene motion, motion blur,
reflection, or repeated structures [25].

When building mosaics or other IBR and multi-view
scene models, camera pose estimation is overwhelm-
ingly seen as a self-contained problem. Even [26], whose
system was designed to cope with moderately-sized
moving objects and rotation-only cameras, performs
global optimization by treating all the estimated pairwise
camera-transforms as equally good. In contrast, our re-
gressor (§3.1) reports high uncertainty for less textured or
more dynamic scenes, and the subsequent layout compu-
tation (§3.2) incorporates this uncertainty. Swipe Mosaic
visualizations can better cope with difficult (though typ-
ical) footage because we work with distributions rather
than committing too early to interest-point matches or
specific Euclidean transform parameters.

Probabilistic distributions on locations have been ap-
plied before, such as to help a “teleporting” robot with
a range sensor localize itself in a known floorplan [27].
Probabilistic models are increasingly employed in Struc-
ture from Motion (SfM) too [28]. SfM classically requires
running RANSAC over more suggested interest-point
matches than the Euclidean transform (five are needed
at minimum). SfM then estimates 3D camera poses and
3D scene point locations, and finally optimizes these
estimates globally using repeated steps of Bundle Ad-
justment (BA) [24]. The stages of SfM are normally deter-
ministic and notoriously computationally expensive, but
we are particularly inspired by the recent work of [29]
who use a less costly optimization to compute an initial-
ization for a single iteration of BA. They convert the de-
terministic pairwise estimates to probabilistic constraints
on a graphical model, which they solve with Loopy
Belief Propagation [30]. The probabilistic approach gives
a principled method of incorporating other information,
such as geotags. Instead of replacing the final half of the
BA pipeline with a probabilistic system, we propose to
model pose probabilistically from the beginning.
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Rendering & Interaction: Much like the direct ma-
nipulation works mentioned already and our own in-
terface, Dynamic Mosaics [31] prominently display for
interaction a current frame from the input footage. Their
rendering method occupies a middle ground between
ours and that of classic image mosaics, in that they
dynamically stitch onto that frame some spatially neigh-
boring frames, choosing neighbors which share a large
number of inlier correspondences. This obviously limits
the variety of scenes which can be displayed, so they
have an alternate mode based on the similarity trans-
form, which requires somewhat fewer correspondences.
We require no explicit correspondence points.

Interest-point based registration with subsequent Bun-
dle Adjustment has allowed numerous interesting
IBR prototypes to emerge. Panoramic Video Textures
(PVT) [32] register and play video clips inside an other-
wise static cylindrical panorama. A competing PVT sys-
tem [33] allows parts of the XY T -volume to be played
back in different order, e.g. making explosions look like
implosions. Also reliant on interest point matches but
with an alternative optimization to BA, [34] are able to
stabilize shaky videos to follow different target trajecto-
ries.

The Lumigraph [35] and Light Field Rendering [36]
cleverly allow the user to recombine the rays captured
by an array of cameras. Interfaces allow users to navigate
the plenoptic function spatially, and to simulate new
focal lengths. [37] showed a hardware based system
for capturing a reduced-size 3D plenoptic function. The
recent system of [38] massively simplifies the process of
capturing light fields by giving fast feedback about what
parts of the static scene have been adequately filmed.
They employ the PTAM [39] real-time SfM system which
registers their cameras if enough interest points are
available, and the camera does the characteristic “SLAM
wiggle” [40].

[41] discuss the differences between strip panorama
systems, and propose a multiviewpoint panorama which
stitches together large regions of photos that were shot
with a hand-held camera. The strength of their interface
is that users can override the stitching to (de)emphasize
perspective effects in different parts of the scene. Their
system relies on the Bundler SfM system [7] for cam-
era registration. The Street Slide system of [42] shows
another interface to multiviewpoint panoramas, which
was part of our motivation for a 2D interface. The Photo
Tourism work of [7] and [43] was instrumental both
for releasing Bundler and the insight that sufficiently
large photo collections could be browsed in 3D. When
images show the same objects or objects in-the-round,
the viewer’s transitions are rendered smoothly, and [8]
offer especially smoothed transition effects for images
that are very far apart in 3D. These systems prefer to
cull low-texture and low-quality images, and endeavor
to eliminate moving objects from their collections. In
contrast, our users are filming video of something spe-
cific for interaction in a 2D swipe interface, need that

sequence to work, and may not have the benefit of static
scenes and distinct interest points.
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Fig. 2: System diagram illustrating how a video is analyzed to gen-
erate a Swipe Mosaic. Blue lines indicate the offline training process.
Dotted yellow lines indicate post processing steps, which take place
after an initial layout is found.

3 SWIPE MOSAIC CONSTRUCTION

Our system takes as an input a video sequence or tempo-
rally ordered set of images {I1, I2, . . . , IN} and presents
them in a new type of interactive mosaic. Valid inputs to
our system include scenes which could be used to create
a panoramic mosaic, but also include scenes containing
significant parallax and dynamic objects, so the Swipe
Mosaic avoids trying to stitch all the inputs together
seamlessly. As an overview of our approach, we first
select pairs of images and make predictions of the relative
camera motion for each pair, before combining those
predictions using a global least squares optimization.
The predictions form a distribution over possible camera
motions. The layout algorithm locates the images on
a 2D manifold so they can be visualized using our
Swipe Mosaic interface. Finally, several postprocessing
steps may be performed to further improve the viewing
experience. The overall pipeline of our visual odometry
regressor and layout system is shown in Fig. 2.

Pair selection generates a set P = {(j1, k1), . . . },
following which camera motion will be estimated be-
tween image pairs {(Ij1 , Ik1), (Ij2 , Ik2), . . . }. A number
of strategies can be employed to select pair indices -
some selection is necessary as comparing O(n2) pairs
is computationally infeasible for large sequences. It is
possible to anticipate loops in the ordered set by finding
image pairs which are temporally distant but show the
same location. Possible techniques for modeling such
similarity include SIFT matching [20], GIST scene de-
scriptors [44], simple L2 intensity distance, or geodesic
distance models such as Isomap [45]. We evaluated
these methods but achieved superior results by initially
picking only close temporal neighbors, and finding loop
closures at a later stage (§3.3).

3.1 Learning and Inference on Image Pairs
We seek a probabilistic estimate of the camera mo-
tion between a pair of images. To that end, we use
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Regression Random Forests (RRF) [46], in turn based
on Random Forests (RF) [47], [48]. Other supervised
learning algorithms could have been used, but RRFs pro-
duce inherently probabilistic multivariate output making
them an excellent fit. Testing on unseen data produces
a distribution of predictions, one from each tree. We fit
a Gaussian to these predictions to obtain a parametric
distribution, but in principle, the raw distribution could
be used. As well as their probabilistic nature, RRFs train
and test quickly, can handle high dimensional feature
vectors, and are trivially parallelizeable. RF algorithms
have been successfully applied in a range of applications,
including human pose recognition [49] and supervised
mesh segmentation [50]. Relative interframe motion is
modeled here using the 2D Euclidean transform, so
whether training or testing, the label-space consists of
three degrees of freedom: two for translation and one
for rotation. In practice, we build an RRF for translation
and an essentially identical RRF for rotation to reduce
the amount of training data needed. The rotational RRF
is trained to predict small camera rotations around the
optical axis and is used for postprocessing. Differences
between the two RRFs are highlighted in §3.3 and §4.

Fig. 3: The RRF is trained on thousands of two-frame image se-
quences, with known camera transformations. To obtain sufficient
quantity and variety of camera moves and scenes, we generated the
training data using a custom-built but simple graphics engine. The
top 2 rows show a few examples of the procedurally generated scenes
with depth variations and dynamic scene elements. The bottom row
contains real images from Flickr that were mapped onto flat but
moving surfaces to generate training data with repeated textures.

3.1.1 Training Data Acquisition
Capturing real-world video data with ground-truth cam-
era motion is error-prone and time consuming even
with specialized equipment. After a variety of attempts,
including using multi-camera rigs and improvised out-
door motion capture, we eventually chose to generate
synthetic image pairs with known camera motion. The
RRFs are able to learn how different 2D translations
and rotations appear when the world is shiny, smooth,
bumpy, repetitive, and when distracting objects are mov-
ing about. We did not render motion blur, but this is cer-
tainly possible. Synthesizing training data with graphics
techniques has previously proved successful [14], [49],
despite the obvious criticism that the resulting regressor
or classifier may only be accurate on artificial-looking

scenes. Aiming for large variations in shape and ap-
pearance, we rendered a family of random landscapes
consisting of both angular pillars and smooth NURBS
surfaces, with shape variability generated by randomly
moving the pillars and deforming the surfaces. Ap-
pearance variability was achieved by rendering each
object with a random color and reflectivity. We render
two images of each landscape, with a random in-plane
camera translation as the only difference between them.
The generated images include both texture rich and tex-
ture poor regions, and irregular curved edges between
NURBS surfaces, which are elusive to many interest-
point detectors.

A benefit of our supervised learning approach is that
if deficiencies are found in the future, it is possible
to augment the training set and improve model per-
formance. During development of our system, it was
determined that regularly repeating structures posed
difficulties for the system. We augmented the training
set by adding “billboard” datasets which replaced the
random landscape previously described with a textured
polygon, containing one of a set of images of repeated
structure which were obtained from Flickr and other
Creative Commons sources. Example frame pairs from
our training data are shown in Fig. 3.

3.1.2 Feature Computation
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(a) Image pair (left/middle) with strong texture, producing
unimodal NCC response (right).
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(b) Textureless image pair (left/middle) producing flat NCC
response (right).
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(c) Image pair (left/middle) with repeated structure producing
multimodal NCC response (right).

Fig. 4: Representative types of image pair we may see
(left, middle), along with their corresponding NCC re-
sponse (right).

A 3599 dimensional feature vector is extracted from
each image pair by encoding the responses of many
Normalized Cross Correlation (NCC) comparisons be-
tween different segments of the images. NCC was chosen
because it concisely describes many properties of image
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pairs. Images containing similar, distinctive, localizable
content produce unimodal NCC responses (Fig. 4a). Tex-
tureless or uniform input images produce approximately
flat NCC responses (Fig. 4b). Images with repeated
structure produce periodic NCC responses (Fig. 4c).
Our feature extraction aims to detect and encode all
these situations, allowing the RRF to learn the mapping
between NCC responses and camera movement.

Fig. 5: template (left) and search (right) patches representing some
combinations of image regions on which NCC is run (6×6 grid level).
Color reflects correspondence. Note the edge truncation behavior.

For image index pair (j, k) ∈ P we take Ij as the tem-
plate image and Ik as the search image. A pyramid of
patches is defined by placing regular 1×1, 2×2, 4×4, 6×6
and 8 × 8 grids onto each image (the 6 × 6 case is
shown in Fig. 5). This approach of taking patches at
different scales and areas of the Each patch at each
grid resolution in the template image is compared using
NCC to a region of the search image creating a response
image N . To allow for scene movement between the
images, each template patch is compared to a larger
region in the search image, by expanding out 1 patch
in each direction unless the edge of the image prevents
this. In Fig. 5 the colored patches indicate representative
examples of regions that would be compared. This first
step (FEATEXTRACTIMG in Fig. 6) produces 121 different
NCC responses, each of which is then encoded to a
few numbers, the concatenation of which forms our full
feature vector.

A strongly peaked NCC response indicates a likely
offset for the scene content (i.e. this portion of the scene
contains localizable texture). In this case providing the
location of this offset to our machine learning system
is crucial, as (for example) if every NCC comparison
contained a strongly peaked offset to the left, this is
strong evidence that the camera has moved to the right.
If the response is relatively flat, i.e. the peak value is
close to the mean value, then the patches compared are
likely textureless and so no definitive decision can be
made about the camera motion. Note that this absence
of certainty is an equally important input to our machine
learning technique (it may make the RRF more likely to
output a large variance). The NCC image containing a
“ridge” (peak only localizable in 1 dimension) indicates
certain types of scene geometry (and certain degrees
of belief about possible motion) and so must also be
concisely encoded. Each NCC response is encoded as
follows (see ENCODENCC in Fig. 6), and the concatena-
tion of all these defines our feature vector.

procedure FEATEXTRACTIMG(Is, It)
for l ∈ {1, 2, 4, 6, 8} do

for x ∈ {0 . . . l − 1} do
for y ∈ {0 . . . l − 1} do
x,y ← TEMPLPIX(l, x, y, It.shape)
x̂, ŷ ← SEARCHPIX(l, x, y, Is.shape)
T ← It[y,x]
S ← Is[ŷ, x̂]
N ←NCC(S,T )
ENCODENCC(N , l,S.shape)

procedure ENCODENCC(N , l, shape)
OUTPUT(MIN(N ),MAX(N ),MEAN(N ))
x, y ← PEAKCOORDS(N )
x′, y′ ← NORMPEAK(x, y, shape)
OUTPUT(x′, y′)
for p ∈ 10, 20 do

OUTPUT(LAPLACECOORDS(N , x, y, p))
OUTPUT(NORMEDHIST(N , (−1, 1), 5))
if l <= 2 then

for G ∈ G do
H ←N ∗G
a, b← MIN(H),MAX(H)
c, d← MEAN(H),MEDIAN(H)
OUTPUT(a, b, c, d)

Fig. 6: Pseudocode to extract a feature vector from equal sized
grayscale images Is and It. Indentation denotes structure, as with
Python. Zero based indexing is used. I[y,x] is a slicing operation
to extract the subwindow defined by pixel index vectors x and y.
TEMPLPIX returns the pixel indices to extract a small “template”
window for a given level, window index and image size (Fig. 5
left). SEARCHPIX operates similarly but produces indices for a larger
“search” window (Fig. 5 right). OUTPUT appends a variable number of
features to the feature vector being built for this image pair (for clarity,
there is no variable to represent the feature vector in the pseudocode).
PEAKCOORDS computes the 2D pixel shift for the peak of the NCC
response. NORMPEAK normalises this in relation to the template image
size. LAPLACECOORDS computes a Laplacian coordinate descriptor on
N around the peak point (x, y) at a scale p. NORMEDHIST returns a
5 bin histogram of the NCC image with bin limits (−1, 1).

Minimum, maximum and mean values are computed
to give an idea of the response distribution, particularly
how the peak value compares to the rest of the values.
The 2D offset of the peak location is found, and the sizes
of the input patches is used to convert it to a normalised
offset, so that when the input patches are exactly the
same and the peak indicates this, the offset (0, 0) will
be added to the feature vector. The shape of the re-
sponse is captured by computing Laplacian Coordinates
around the peak point. We apply the Laplacian operator
1
4

[
1 −2 1

]
to 1D “slices” through the 2D surface ofN .

These slices all coincide with the peak, and are made at
4 different orientations and two different scales (so the
points away from the peak which are multiplied by 1 are
either 10 or 20 pixels away). This 8D descriptor encodes
the shape of the peak - if all the numbers are large then
the peak is strongly localizable in all directions. If all the
numbers are close to zero this means the peak is very
wide, and if (for example) the numbers for horizontal
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“slices” are low and the numbers for vertical slices are
large, the peak is a horizontal “ridge”. A normalised
histogram with 5 equally spaced bins between -1 and
1 is also stored.

The final step, which we only carry out for the 1×1 and
2×2 grid resolutions, is to run a Gabor filter bank G over
the image. The filters G ∈ G vary in orientation, scale
and frequency in order to try to capture the multimodal
NCC response produced by images with repeating struc-
ture. The min, max, mean and median of each Gabor
response is stored, thus completing our feature encoding
scheme. The parameters used to generate the filter bank
can be found in the supplemental material.

3.2 Layout to Global Coordinates
The pairwise estimates provided by the Random Forest
use a relative coordinate system, but to navigate images
as a Swipe Mosaic we require image locations in a global
coordinate system. By limiting motion to a 2D plane and
approximating the RRF output as Gaussian, we solve
this problem in closed form using linear least squares
in a similar spirit to [51]. For each (j, k) ∈ P , the RRF
gives a mean µjk = [µxjk µyjk]

T and standard deviation
σjk = [σxjk σyjk]

T . An error function

E(x) =
∑
j,k∈P

(
(xk − xj)− µxjk

σxjk

)2

+

(
(yk − yj)− µyjk

σyjk

)2

(1)

is defined on the vector of all camera locations

x =
[
x1 y1 x2 y2 . . . xN yN

]
(2)

by summing squared differences between the actual pair-
wise offsets in x and the predictions, weighted by the
prediction uncertainty. E(x) can be written as e(x)T e(x)
where

e(x) =

[
(xk1
−xj1 )−µ

x
j1k1

σx
j1k1

(yk1
−yj1 )−µ

y
j1k1

σy
j1k1

. . .

]T
. (3)

e(x) can be written as Ax − b where each row of A
contains zeros in all but two entries, at locations to match
the variables in x, containing positive and negative in-
verse standard deviation, and the corresponding element
of b is the mean prediction from the forest divided by
the standard deviation. Two more rows are added to A
and b to overdetermine the system by forcing (x1, y1) to
be (0, 0). The unique solution for x is determined by the
standard least squares method for solving Ax = b.

3.3 Post-processing
Translational Loop Closure
Even with good predictions, errors accumulate over
long image sequences, meaning camera path loops may
not line up correctly in the output. To mitigate this
problem, from the initial layout we automatically find

“loop points” - pairs of images which are close in the
2D coordinate space but temporally distant. We compute
each image’s five nearest spatial neighbors, and any
neighbors whose timestamps differ by > n become loop
points. For our sequences we set n at 25. The number of
pairs chosen with this technique is scene-dependent, but
it is typically orders of magnitude less than the number
of temporal pairs used to make the initial layout. From
each loop point image pair, we compute a feature vector
and corresponding prediction from the translational RRF.
A new layout is computed from the combined set of
temporal and loop-based predictions.

Rotational Correction
The majority of video sequences will contain small vari-
ations in rotation about the optical axis, which may be
difficult to see when viewing frames in order. When our
viewer (§3.4) transitions across loop points containing
this kind of rotation, even a few degrees disparity is
enough to produce a noticeable artifact. The visualiza-
tion can render the images with rotation correction, but
needs to be provided with the amount to rotate each
image by. A second “rotational” RRF was built using
the same feature vector as before, but trained to predict
optical axis rotation between two images. Corresponding
synthetic training data was rendered using the same
method as for translation, with the only difference being
the camera undergoing a random rotation around the
optical axis instead of a random translation.

Because our training data for this RRF contains image
pairs only affected by rotation, performance was poor on
images containing rotation and translation. To avoid this,
we crop each image such that the centers of the cropped
images should contain the same scene point, and thus
the cropped images differ only in camera rotation. Our
2D translation prediction from the layout algorithm is
used to calculate how much to crop the images by. As
with the translational loop closure, we predict rotations
for image pairs which are found at “loop points”. For
each image pair, features are generated from the cropped
images, and the rotational RRF returns a 1D probabilistic
estimate. Relative rotation estimates are combined using
an analagous technique to the least squares layout al-
gorithm (§3.2). Linear constraints encourage the relative
rotational difference between two frames to match the
predictions, encourage the rotations to be close to zero
(this is a hard constraint for the first image only), and
encourage smoothness between temporal neighbors.

3.4 Swipe Mosaic Interface
We have implemented our viewer interface as both a
native desktop application, using Python and OpenGL,
and a web app using JavaScript and WebGL, allowing
users to browse Swipe Mosaics without installing any
software. Whichever interface is used, Swipe Mosaics are
viewed by first loading in images and camera locations.
The interface shows a single image in sharp focus at
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any one time, and optionally shows blurred surrounding
images. The user navigates by clicking anywhere on the
image and dragging (“swiping”). The swipe direction
determines where on the 2D map the program looks for
a new frame to transition to. If the user swipes enough
to the left, we transition to rendering the neighboring
frame on the right, in a manner similar to PDF viewers
and services such as Google Maps. An “minimap” in
one corner of the interface conveys an idea of the overall
layout of the scene and highlights the location of the cur-
rently displayed image. As an alternative navigational
aid, users can enter “Picasso view” which smoothly
zooms out and displays all the images overlaid. These
images are not intended to line up perfectly as in a
panoramic mosaic, but rather to provide a sense of which
directions can be navigated. While the user presses down
and swipes to navigate to a new image, we render
smooth transitions using alpha blended crossfades. The
on-screen positions of the current and next frames move
smoothly in sync with the mouse, with the intention that
if the user clicks on a particular recognizable feature in
the scene, that feature will remain close to the cursor no
matter where it is moved. If a rotation vector (see §3.3)
is provided to the viewer, images are rendered with the
corresponding rotational correction.

4 EXPERIMENTS

Experiments were performed on videos filmed by our
users on mobile phones, camcorders and SLRs, along
with videos from other sources which were not captured
with this purpose in mind. We examine the performance
of the pairwise regressor, and the overall Swipe Mosaic
rendering and visualization system quality. We perform
qualitative and quantitative comparisons to validate our
system’s ability to handle a variety of sequences, which
are listed along with their defining characteristics in
Table 1. A number of baseline algorithms are compared
to, which represent different approaches to this task in
the existing literature.

To reiterate, there are many methods that produce
camera paths on simple, textured, static, planar scenes.
When they work, they too could be used to prepare a
sequence for use as a Swipe Mosaic. We compare to
specific representative baseline methods to demonstrate
that our approaches degrades gracefully with footage
that is less simple, in a varity of ways.

4.1 Regressing Motion Between Image Pairs
We start by inspecting what the regressor has learned
about the relationship between the computed features
and estimating translations. When images contain un-
ambiguous texture (Fig. 7a) our regressor is confident
in both x and y. For scenes with repeated texture but a
unique vertical structure (Fig. 7b), the regressor outputs
small σx and large σy , reflecting the uncertainty caused
by the aperture problem. Fig. 7c show the result of using
the same type of regressor and features, but training

Sequence Characteristics
FENCE∗ Easy sequence, abundant texture
MINI Abundant texture
LOBBY∗ Abundant texture, demonstrates loop closure
FACADE Abundant texture
GRATING Partially textureless
RAILS Large scale repeated structure
SKATER Dynamic and deforming foreground object
FLOWERS† Dynamic objects, non planar motion, [52] failure case
SCULPTURE Little texture, motion blur
LEAVES Dynamic and deforming scene
OBELISK Non planar camera path
HANDBAG Dynamic specularities
WALL Ambiguous motion due to repeated structure
VINYL Motion blur, textureless occluding object
ISS∗ Demonstrates Loop closure
DINO Moving background elements
PRISM Automatic gain control, CCD overload
AQUATIC† Scene from movie, contains dynamic objects + parallax
FREIBURG2† 6D Ground truth available

TABLE 1: Test sequences along with their defining char-
acteristics. ∗ - only appears in the supplemental material.
† - captured without intended purpose of building a
Swipe Mosaic.

to estimate the in-plane rotation between two images.
We expect the rotational RRF to perform better with a
customised feature vector, but the vector designed for
translation allowed rotational correction within ±5◦.

Initial versions of our feature extraction used Optical
Flow (rather than NCC) on the input images, before
condensing that information into a vector. Building the
feature vector from NCC is not an obviously better
choice than using Optical Flow, but we obtained better
test-time results with NCC based features. It is likely that
the NCC responses are better correlated with motion-
confidence than flow, which has some estimated vector
for every pixel. Significantly, the regressor has the ben-
efit of learning from our graphics engine: it has seen
thousands of rendered examples of image pairs, with
knowledge of the true 2D Euclidean transform.

The RRF training process selects some elements of the
feature vector more frequently than others for estimating
the transform parameters at test time. Fig. 8 shows spa-
tial histograms for each scale of the NCC grid, indicating
the frequency with which a feature computed from that
NCC sub-window was chosen by the forest training
process. Interestingly, the most used level is the 4 × 4
grid, and there is a strong peak within that histogram for
the most central 4 of the 16 possible NCC sub-windows.
While using a single NCC calculation to compare whole
images is a common approach for image alignment,
these graphs show that the finer grained NCC sub-
windows are providing important extra information to
get the right offset. The top level of features (representing
a single global NCC comparison) are chosen by the forest
training process 246 times, whilst the 4 × 4 resolution
features are chosen 665 times. We know that this is due
to these features being more informative, rather than
simply more numerous, because the 8 × 8 level, which
contains a larger number features than all the other levels
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Fig. 7: In each column the top two images were inputs resulting
in the RRF output at the bottom. The graphs in a) and b) show 2D
results from the Translational RRF, and c) shows 1D results from the
Rotational RRF. Blue dots show individual tree outputs, red dots &
bars show the mean & variance of the fitted Gaussian.

put together, is only chosen 121 times.

Fig. 8: Spatial histograms showing the quantity and arrangement of
features chosen most frequently during training from each level of the
NCC grid, for our translational RRF.

4.2 Swipe Mosaic Visualization
A key property of Swipe Mosaic visualization is being
able to grab elements and navigate spatially between
temporally distant frames. As shown in the video, it
is possible to easily maintain a sense of position while
navigating within the wider scene. Possible applications
for the system include recording the damage in a car
accident for later scrutiny, or examining products when
shopping online.

4.3 Suitable Image Sequences
Swipe mosaics are best observed in motion, so we
present qualitative results in the video. Our system per-
forms best when the camera motion and scene geometry
are parallel and both approximately planar (as with the
training data), but we are robust to deviations from this
setup. OBELISK shows that if the object of interest fills
much of the screen, we infer a 2D version of the motion
as the camera rotates around the object. DINO contains

people in the background moving in various directions,
but the transforms computed allow navigation along the
main item of interest. The level 4 histogram in Fig. 8
helps explain this; the RRF learns that the center of the
image is usually more informative, and so treats the mo-
tion implied by central pixels as more informative than
that implied by edge pixels. View dependent effects such
as the specularities in the HANDBAG sequence do not lead
to incorrect motion estimates. SKATER, however, features
non rigid movement in the centre of the frame and only
the outskirts imply the (correct) sideways motion.

To demonstrate the utility of our system on existing
sequences filmed by others, we processed a scene from
the movie “The Life Aquatic with Steve Zissou”. AQUATIC

features the camera panning over a cutaway version of
a boat, travelling between rooms and showing differ-
ent characters. The camera trajectory roughly matches
the assumptions made in our training data, but the
scene contains large amounts of parallax due to depth
variation, as well as dynamic characters. We put 600
frames into our system and built a swipe mosaic which
allows intuitive navigation between seven distinct areas.
Sample frames from transitioning “through” a wall are
shown in Fig. 10. Please see the supplemental video to
view this scene in motion.

Sequences such as HANDBAG (Fig. 9g) can be pro-
cessed successfully despite containing out-of-plane cam-
era translation and strong specularities. Note that if a
loop point featured images with differing scale, this
would pose a problem for our system both in terms
of the loop closure algorithm and in terms of viewer
artifacts. To test the limits of our system, we ran it on
a challenging part of the FLOWERS scene, a failure case
from [52], which the authors describe as troublesome
due to the pedestrians occluding geometry and cutting
feature trajectories. The camera is moving forwards as
well as sideways so that the contents of the flower stall
appear to be moving roughly diagonally in image space.
Our system copes with this motion, and we can browse
the scene by swiping elements on the flower stall. This
challenging video also demonstrates a failure mode of
our system; obstructing bystanders in the image centre,
combined with motion that differs significantly from that
of our training data, makes for a very difficult scene.

4.4 Qualitative Evaluation against Baseline Algo-
rithms
We evaluate the performance of our odometry regressor
by comparing to simple NCC based alignment [25],
VisualSfM by Wu et al. [53], [54], Viewfinder Alignment
by Adams et al. [55], Real-time image-based tracking
of planes using Efficient Second-order Minimization
(ESM) by Benhimane & Malis [56], and “microSfM” or
“µSfM”, a new system which uses the methodology of
Fundamental Matrix computation but produces a 2D
translation. While these techniques can be applied to a
wide range of sequences, we confirmed known circum-
stances under which each of the baselines failed, and
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(a) SKATER (b) GRATING (c) FLOWERS (d) SCULPTURE (e) LEAVES

(f) OBELISK (g) HANDBAG (h) VINYL (i) DINO (j) PRISM

Fig. 9: Screenshots of various sequences loaded in the Swipe Mosaic viewer

Fig. 10: A series of screenshots taken during a single swipe, navigating AQUATIC, a scene generated from the movie “The Life Aquatic with
Steve Zissou”

our technique succeeded. Our baseline comparisons are
summarised below; please see the Appendix and video
for details.

Fig. 11: 2D camera coordinates (unitless) for SCULPTURE produced by
our system (left) and VisualSFM (right). Blue points indicate images
where both systems gave an estimate of location (note the estimates
differ); red points are images where only our system produced an
estimate. NB: One outlier is not shown in the right hand image

Our NCC based feature encoding is partly inspired
by the Direct Methods detailed by Szeliski [25], which
compute the best 2D alignment between images from the
location of the peak in their combined NCC response.
This simple method often succeeds, but we found se-
quences where the NCC method produced incorrect
results. Szeliski [25] notes “[NCC’s] performance degrades
for noisy low-contrast regions”. For example, in the PRISM

sequence where horizontal movement takes place, the
failure occurs on two specific frames where the resulting
NCC image had a maximum implying a translation
of (0, 0). The NCC response contained a second mode,

corresponding to a more sensible horizontal offset, but
the height of this “correct” peak was slightly lower than
the peak representing zero motion, so it would never be
chosen by the alignment algorithm. Systems determinis-
tically selecting the global NCC peak and ignoring other
factors will fail on this scene and similar scenes. Our RRF
incorporates this peak offset information as part of the
feature vector.

VisualSfM [53], [54] is a state of the art SfM system,
which can process images either as “ordered” (tem-
porally sequential frames) or “unordered”. It produces
excellent results in general, but struggles when few or
misleading feature matches are present. For example, we
evaluate on two sequences: SCULPTURE containing motion
blur and textureless regions, and LEAVES containing mov-
ing geometry. VisualSfM failed to return a full, correct
result for either scene, whereas in both cases our system
produced a full layout suitable for browsing as a Swipe
Mosaic. For SCULPTURE, the best result was with ordered
mode, but only 38 camera positions were returned for
an input of 101 images (Fig. 11). Camera positions were
produced for all 201 frames in LEAVES using unordered
mode, but the location accuracy becomes progressively
worse throughout the sequence (see Video).
µSfM is a system of our own creation using traditional

SIFT matching and RANSAC to compute a 2DoF trans-
lational offset rather than a 7DoF fundamental matrix.
Though designed to be robust in many scenarios, The
VINYL sequence, containing a textureless obstruction close
to the camera, causes µSfM to fail. Descriptors computed
on the obstruction display self-similarity, resulting in
noisy matches. Frames containing the obstruction were
laid out far to the right of the rest of the scene, when
they should be in the middle. Our system produces a
correct horizontal motion path. A similar failure occurs
in PRISM, which features a typical home video problem
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Fig. 12: 2D camera coordinates produced for OBELISK using ESM
(Fig. 12a) and our method (Fig. 12b). The true camera motion is
approximately constant horizontal translation, coupled with rotation to
remain pointed towards the object of interest (see supplemental video).

of the camera moving into direct sunlight, and the
automatic gain control taking a few frames to adapt.
No interest points were matched between the beginning
and end of the sequence, so camera locations cannot be
inferred for the whole sequence. Our system produces a
zero mean, high variance estimate (effectively applying
a Brownian Motion prior) whenever there is no visual
evidence suggesting any particular direction of motion,
allowing the resulting (complete) set of camera locations
to be browsed as a Swipe Mosaic.

Real-time image-based tracking of planes using Effi-
cient Second-order Minimization (ESM) [56] is a direct
method which explicitly models the scene as a plane, and
searches for a parameterised transform which minimises
the sum of squared differences between two images.
The transform can be parameterised as anything from
a full homography (8DoF) to a translational transform
(2DoF), and the parameters are solved for using an
efficient method which achieves Newton method like
convergence rates, without having to compute the Hes-
sian. We used the implementation of ESM available in
Ed Rosten’s LibCVD project, using 2 DoF to produce a
translation between each image pair, before using our
layout algorithm. ESM produces a good Swipe Mosaic
result for some of our test sequences, but the explicit pa-
rameterisation of the scene as a plane leads to problems
when faced with non-planar camera paths or distorting
objects. ESM performed very badly on the OBELISK scene,
laying out frames which should be very far from each
other in roughly the same place. Our system produced
an intuitively navigable Swipe Mosaic. The camera paths
produced by ESM and our method are shown in Fig. 12.
Note the broadly horizontal linear path produced by our
method in contrast to the ESM path which continually
crosses itself. This is due to our method’s more gradual
degradation as scenes deviate from planar, allowing us

to cope with strong perspective deformations. See the
supplemental video for a comparison of the browsing
experience of these two solutions.

Viewfinder Alignment (VfA) [55] computes con-
strained transforms between temporally close video
frames. A “digest” containing edge information in mul-
tiple orientations, and the locations of the strongest
detected corners is computed for each frame. Two di-
gests are matched by aligning the histograms to give
a putative 2D shift, and aligning the detected corner
locations to evaluate how likely this shift is to be correct.
VfA works well given sufficient strong edges and recog-
nisable corners, but if either are absent it will produce an
incorrect transform, or no transform at all. The GRATING

sequence contains similar strong edge information in all
frames, leading VfA to erroneously believe geographi-
cally distant frames were close together. Apart from the
edges, sufficient visual cues are present in the image so
that both our system and µSfM inferred a correct result.
Because only the location, and no visual descriptor, is
stored for each corner, VfA is prone to linking disparate
frames with similar edges. Low texture regions in PRISM

or VINYL cause no corners to be detected, meaning VfA
cannot compute a result. Further results are included in
the supplemental material.

4.5 Quantitative Evaluation Against NCC

While graceful degradation is easy to illustrate qual-
itatively, it is reasonable to check if regression using
our NCC-based feature vectors is actually different than
just using NCC directly, at least for best-case in-plane
motion and static scenes with negligible motion blur. To
quantitatively evaluate the odometry of our system, we
compare on the FREIBURG2 sequence from the TUM [57]
dataset. This dataset consists of Kinect video sequences
alongisde 6D ground truth camera positions, generated
using 100Hz active motion capture. Unlike the rest of the
dataset, the camera path in FREIBURG2’s first 950 frames
contains almost exclusively vertical and horizontal trans-
lation. This is the kind of motion that both NCC and our
system should be able to handle. The appearance of the
indoor office scene is unremarkable in terms of texture
or dynamic elements.

Both NCC and our system were used to generate 2D
camera locations for the sequence. Every pair within a
4 frame temporal window was used to generate relative
offset predictions. For both systems, the offsets were fed
to our least squares layout algorithm. To compare the 6D
ground truth poses with each 2D solution, three steps
had to be carried out. First, a ground truth pose must
be established for each RGB frame, as the dataset only
provides camera locations from motion capture, and
the Kinect and motion capture systems were running
unsynchronised at different frequencies. Secondly, some
projection of each 6D camera pose onto 2D must be
established, and finally the 2D solutions must be scaled
and aligned to assess the correctness of the locations.
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Fig. 13: Alignment result for NCC (top) and our system (bottom) for the FREIBURG2 sequence [57]. Each graph shows the camera locations
from the prospective solution (Red) after being aligned using Procrustes to the ground truth locations computed with a “best fit” plane (Blue).
Corresponding camera locations are joined by grey lines. Note the highlighted regions (green ellipses / arrows) in which our system provides
a solution substantially closer to ground truth. Navigating these areas of the NCC solution as a Swipe Mosaic would require users to follow
a more distorted trajectory than would seem natural. Corresponding frames are shown above to give an idea of the scene makeup. Onscreen
viewing recommended.

To establish a 6D ground truth location for each
RGB frame, we linearly interpolated between the clos-
est two motion capture positions using the globally
synched timestamps (available for both motion capture
and Kinect readings). The rotation was encoded as a
quaternion during this process, ensuring linear inter-
polation is a reasonable approach. The result of this
operation is a 6D camera pose corresponding exactly
to each RGB frame. The 6D to 2D projection step is
described below, and the final alignment step is carried
out using the Procrustes algorithm [58].

Given a 3D plane represented as a unit normal n̂ and
a point on the plane p, we define two unit vectors û1

and û2 such that ûT1 û2 = ûT1 n̂ = ûT2 n̂ = 0. The exact
orientation of these vectors is not important as the sub-
sequent alignment includes a rotation step. Each camera
location ci is projected onto a 2D location on the plane
(ûT1 ci, û

T
2 ci) (see Fig. 15). To define the plane orientation,

we tried both a “best fit” to all the camera locations,

and also tried using the “up” and “right” vectors of
each individual camera in turn. The “best fit” plane was
defined by setting n̂ to the average forward direction of
each camera. The maximum angular difference between
the computed normal and the forward vector of any of
the cameras is 9.46 degrees, confirming that the scene
contains only minimal rotation and is therefore a good
candidate sequence for this comparison.

On the best fitted plane, NCC gave a final Mean
Squared Error of 14.2 cm2 against our system’s 12.9 cm2,
an improvement of 9.4%. The alignments resulting from
both systems are shown in Fig. 13. It is interesting to
note that both algorithms make similar mistakes, owing
perhaps to our system being built on top of NCC based
features, but our system produces errors of smaller mag-
nitude, especially towards the center of the horizontal
axis, because it incorporates more information than just
the top level, entire-image NCC comparison. As well as
comparing with this fitted plane, we tried aligning to
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Fig. 14: Comparison of Mean Squared Errors between our method
and NCC for the whole range of possible individual camera projection
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change which ground truth camera defines the projection plane, both
solutions (being so similar) have coinciding increases or decreases in
performance.

n̂

û1
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Fig. 15: Diagram showing how 3D camera positions c1, c2, c3 are
projected (red dashed line) onto a 2D coordinate space defined by a
plane (blue). For the “best fit” case, the plane normal n̂ is generated by
averaging the forward vectors of all the cameras. The basis vectors û1

and û2 lie within the plane and are mutually orthogonal. When fitting
to the plane defined by an individual camera, û1 and û2 are chosen
to be parallel to the “right” and “up” vectors of individual cameras
(black dotted lines).

each of the planes defined by one individual camera’s
orientation, by projecting all other cameras onto the
local “right” and “up” vectors. The results of this are
shown in Fig. 14. Unsurprisingly, whichever one of the
950 cameras we choose, we see an improvement with
our system, as shown by the green line always being
underneath the blue line. This evaluation shows that
even for a texture-rich real world sequence, not captured
with Swipe Mosaics in mind, our system produces a
measurable improvement over the alignment produced
by NCC.

Our evaluations show the robustness of our system
to visual phenomena found difficult by other systems.
In the presence of dynamic objects, lack of texture, or

repeated structure, we are able to compute 2D locations
which enable browsing of the scene, degrading grace-
fully in the presence of inconclusive visual information.
Many of our sequences were captured by users unfa-
miliar with the workings of the system, and our success
here demonstrates our robustness to input data straying
outside the assumptions of the training data. All results
were generated by a single trained translational RRF
with 10 trees and maximum depth 12. At each node,
2000 possible feature splits were considered. The one-
time training took 1h 43m on a Core 2 Duo 2.8 GHz,
using both CPU cores. All experiments were carried out
with the same synthetic training set built from 8800
image pairs. The rotational RRF was trained with 20
trees of depth 12, considering 100 feature splits per node.
Only 400 image pairs were used in the training set, as
inferring pure rotation is a strictly easier problem than
translation, because what appears in the images is not
scene geometry dependent. All images were 768x432 or
640x480. A 2.5 GHz single core Xeon, computed 121
NCC matches and the 3599D features for two images
in 15 seconds. Most useful datasets contain thousands
of image pairs, so we used a cluster to process datasets
quickly.

5 CONCLUSION

Our results show that Swipe Mosaics can be used to
intuitively navigate video sequences containing a range
of camera motions and visual content, including those
that failed or trouble existing standard baselines. As
seen in the video, even passively observing someone
else’s Swipe Mosaic interaction provides a good sense
of a scene’s layout. Traditional panoramic image mosaics
undoubtedly have a cleaner overall appearance than our
Picasso-view. Yet the payoff of browsing video frames
through our interface is enormous: footage exhibiting
parallax and other view- and lighting-dependent effects
can be visualized without the extra user effort needed for
most multi-perspective renderers (e.g. [59]), because the
pixels need not join up. Training our RRFs on synthetic
data has led to a visual odometry system that achieves
our goals. It manages to estimate visually-acceptable
translations and rotation both in textured scenes, where
existing methods also work well, but also in much more
difficult scenes, where other methods become brittle
or fail. It is certainly possible that our model may
learn still better correlations between appearance and
pose if, for example, 3 or more frames were exam-
ined together, potentially allowing motion models to be
incorporated. Quite significantly from the perspective
of potential users, our adapted regressor-layout pairing
takes account of ambiguities when computing distribu-
tions over possible camera-motions. This means that our
visualization prototype fails more gracefully than exist-
ing systems that are designed for somewhat idealized
conditions. In an indirect way, our RRF is looking at
thousands of examples to learn its own version of the
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user-sought visual continuity: which parts of an image
pair are correlated with each other, and how? While still
challenging to dissect, the visualization of our RRF in
Fig. 8 shows that NCC comparisons from particular parts
of the image, at particular scales, were learned to be the
most informative for this task.

5.1 Limitations and Future Work

Some kinds of “unexpected” motion (motions not fea-
tured in the training set) are handled well by our system,
but others are not. When most scene geometry is moving
in a similar manner, we are able to produce sensible
Swipe Mosaics despite the presence of, for example,
forward motion (which the RRF has not been trained on).
However, as shown by the FLOWERS example, occluders
dominating the image center can cause failures. Our
model has learned to rely on the center of the image
somewhat more than other areas, so it is likely that
an enhanced feature vector and training set would be
required to cope with this problem. Object-recognition
could also be incorporated, e.g. to recognize and ignore
pedestrians. Our NCC based feature vector performs
well, but other features could replace or augment it.
VfA’s edge “digest” is appealing in this regard as it is
quick to compute and could possibly be extended to
describe a distribution over different alignments. Sup-
porting more camera degrees of freedom in one RRF
is desirable, but likely to require much more training
data. Continuing to target individual RRFs at only 1
or 2 degrees of freedom each, as in this work, seems
a promising approach. A valuable improvement to the
interface would be to give live feedback at capture time
about what parts of the scene require more detailed
recording. The DTAM-based feedback in [38] may not
be possible if scenes lack reliable interest points, but
we could provide the RRF the inertial and gyroscope
readings that are available in many smartphones. For
now, the system is device agnostic, making it easy to
create Swipe Mosaics. Swipe Mosaics will hopefully
encourage content-creators to document and share the
details of the world around them.
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