
My Text in Your Handwriting

Tom S. F. Haines, Oisin Mac Aodha and Gabriel Brostow
{thaines,o.macaodha,G.Brostow}@cs.ucl.ac.uk

27th July 2016



Problem

• To synthesis user specified text with a specific authors handwriting.

• To a standard that can fool human beings.

• This is guided texture synthesis.

Original letter Tagged paragraph Synthesised Result (Arthur Conan Doyle)



Why?

Gift cards/flowers sent without the giver present
(e.g. via Amazon). Either use handwriting model

of giver or a celebrities.

Camouflaging important documents in the mail,
such as bank cards.

Synthesise handwriting when a disability affects
writing. Build model with pre-disability samples.

Artistic purposes, such as comic book lettering.
Computer games in particular can contain large

quantities of text.



The Problem With Graphics Tablets

• Almost all previous methods use graphics tablets for input.

• Distorts the authors handwriting – like a whiteboard.

Real

Tablet
(Written by an experienced tablet user)

• Has advantage of actual pen path, but disadvantage of no texture.

• Can’t use historical writing.

• Does not satisfy use cases – we therefore scan normal writing on normal paper.



Preparation Overview

︸ ︷︷ ︸
• Input:

• A willing author.
or

• Examples of an authors handwriting.

• Output:
• An authors tagged handwriting.



Data Collection

• Author unavailable → Scan in whatever is
available.

• Author available → Get them to write out a
sample:

• We can optimise! Maximise coverage for
number of words written.

• Use proper sentences – unfamiliarity changes a
persons writing.

• Select them to minimise extended Scrabble
scores.

• Need a corpus (sentences and statistics) – top
100 books from Project Gutenberg.



Extended Scrabble Scores

• Scrabble score: ∼∝ number bits required to encode each letter (Shannon entropy).
• Original statistics from front page of The New Your Times

– we use statistics from Project Gutenberg corpus.
• We don’t quantise.

• Extended to also include pairwise statistics – how people write a letter is
influenced by the letters position relative to others (even if print, and especially
start/end of word).

• Extended to consider sentences already selected, so we get variety.



Analysis

• We need to obtain information about scanned handwriting sample:
• The Rule.
• Segmentation.
• Alpha Matting.
• Spline Fitting.
• Glyphs / Ligatures.

• We automate as much as reasonable, but allow human intervention.



The Rule

• Rule – line on which the author is
writing on.

• On back of page so barely visible in
scan (if author available).

• User click-drags to set a homography.

• Not worth automating.



Segmentation

Separate ink line from background:

1 Use mean shift on RGB cube:
• Largest mode is background colour.
• Second largest mode is ink colour.
• Remaining modes are ignored.

2 Perform graph cuts:
• Unary term from mean shift.
• Pairwise term from colour difference.

3 Finally, perform a line aware smoothing.
• Convert mask to signed distance function.
• Calculate gradient at each pixel.
• Smooth in gradient direction only.

User can force pixels to be foreground/background.



Alpha Matting

• Need to composite output onto
arbitrary backgrounds.

• Use segmentation and inpainting to
generate a background-only plate.

• Solve matting equation per-pixel to
obtain base colour with alpha channel.

• Automatic only.
(Arthur Conan Doyle’s handwriting)



Spline Fitting

• Thin mask to extract line.

• Assign radius as largest circle that fits
within mask at each pixel on the line.

• Assign density as mean unary term
from segmentation within radius.

• Automatic only.



Glyphs / Ligatures

• Attach meta data to the line:
• Splits mark the transitions between glyphs /

ligatures.
• Links indicate two separate lines are part of

the same glyph (e.g. tittle and stem of “i”)
• Labels indicate which UTF-8 character code a

glyph represents.
(Ligatures are implicitly the lines that attach

characters. Start and end of word are also

indicated.)

• Automatic system solving constrained
handwriting recognition problem.

• Manual editing, as automatic system is not
100% reliable.



Analysis Summary

Not shown:

• Ink density

• Matting



Synthesis Overview

︸ ︷︷ ︸
• Input:

• User provided text to generate.
• An authors tagged handwriting.

• Output:
• A texture containing the users text written with the tagged handwriting.



Core Idea

• Glyphs taken directly from the author are positioned on the page.

• The user provides the text, but there is still a choice of glyphs for each position in
the word.

• Spacing between glyphs – both horizontal and vertical is important to replicating
an authors style.

• Ligatures need to be generated when appropriate.

• Ultimately, it all has to be rendered to a texture.

A cost function is minimised. . .



Cost Function

We minimise:

C(R, t, A) = GA(g, t) + SA(g, x) + LA(g, x, l) + TA(g, x, l, R).

• R – Output texture.

• t – Input text string to synthesis.

• A – Input authors tagged handwriting.

• g – Glyphs to use, one per character in t.

• x – Positions of glyphs, one per glyph.

• l – Set of ligatures to generate between
glyphs.

• GA(g, t) – Match author’s glyphs
to user’s text.

• SA(g, x) – Match spacing of
glyphs to author.

• LA(g, x, l) – Match ligature use
to author.

• TA(g, x, l, R) – Match output
texture to glyphs/ligatures.



GA(g, t) – Glyph selection

• Constraint that selected glyphs represent
the user-requested characters.

• For historical cases there may be missing
characters – allow substituting a lower case
letter for an upper case letter if necessary.

→



SA(g, x) – Glyph layout

• Both horizontal and vertical offsets are
required between glyphs.

• Original glyph offsets are used where
available (ligatures).

• When not available a regression forest
estimates them (no ligatures).

• Humans have a feedback mechanism – if
you write with your eyes closed you will
drift off the rule, but eyes open and you
correct for any drift.

• This feedback mechanism is replicated
using Kalman smoothing.

→



LA(g, x, l) – Ligatures

• Ligatures are required if both adjacent
glyphs have them, but omitted if either is
missing one.

• Authors have print handwriting, joined up
handwriting, or partially joined up. First
two cases are covered by this rule; for third
it’s a reasonable guess as we don’t have
enough information to infer exact rules.

→



TA(g, x, l, R) – Texturing

• Encourages nearby glyphs to have similar
ink density and radius – sudden changes
are unrealistic.

• Hides the seams between glyphs / ligatures
(graph cut textures).

→



Solving

• Can’t solve directly.

• Instead, solve it in four stages, one per equation, in order given.

• Each stage fixes some details using an appropriate representation and
approximating other costs with proxies.

Stage Fixes Core Technique

Stage 1 Glyphs used (g) Dynamic programming
Stage 2 Glyph positions (x) Kalman smoothing
Stage 3 Ligature existence (l) Heuristic
Stage 4 Output texture (R) Graph cuts

• Random/regression forests and heuristics are used to estimate proxy costs.



Colour Calibration

︸ ︷︷ ︸
• If printing we need to get as close as possible to real ink.

• Perform a closed loop colour calibration by printing out and then scanning back in
a calibration target.

• Uses thin-plate splines.

• Printers lack the dynamic range to cover most inks, but it still helps fool an
observer.


