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Abstract. Background subtraction is an important first step for video
analysis, where it is used to discover the objects of interest for fur-
ther processing. Such an algorithm often consists of a background model
and a regularisation scheme. The background model determines a per-
pixel measure of if a pixel belongs to the background or the foreground,
whilst the regularisation brings in information from adjacent pixels. A
new method is presented that uses a Dirichlet process Gaussian mixture
model to estimate a per-pixel background distribution, which is followed
by probabilistic regularisation. Key advantages include inferring the per-
pixel mode count, such that it accurately models dynamic backgrounds,
and that it updates its model continuously in a principled way.

1 Introduction

Background subtraction can be defined as separating a video stream into the
regions unique to a particular moment in time (the foreground), and the regions
that are always present (the background). It is primarily used as an interest
detector for higher level problems, such as automated surveillance, intelligent
environments and motion analysis. The etymology of background subtraction de-
rives from the oldest method, where a single static image of just the background
is subtracted from the current frame, to generate a difference image. If the abso-
lute difference exceeds a threshold the pixel in question is declared to belong to
the foreground. Such an approach fails because the background is rarely static.
Background variability has many underlying causes [1,2]:
Dynamic background, where objects such as trees blow in the wind, escalators
move and traffic lights change colour.
Noise, as caused by the image capturing process. It can vary over the image
due to photon noise and varying brightness.
Camouflage, where a foreground object looks very much like the background,
e.g. a sniper in a ghillie suit.
Moved object, where the background changes, e.g. a car could be parked in
the scene, and after sufficient time considered part of the background, only to
later become foreground again when driven off.
Bootstrapping. As it is often not possible to get a frame with no foreground
an algorithm should be capable of being initialised with foreground objects in
the scene. It has to learn the correct background model over time.
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Illumination changes, both gradual, e.g. from the sun moving during the day,
and rapid, such as from a light switch being toggled.

Shadows are cast by the foreground objects, but later processing is typically
not interested in them.

The background subtraction field is gargantuan, and has many review papers
[3,4,5,2]. Stauffer & Grimson [6] is one of the best known approaches - it uses a
Gaussian mixture model (GMM) for a per-pixel density estimate (DE) followed
by connected components for regularisation. This model improves on using a
background plate because it can handle a dynamic background and noise, by
using multimodal probability distributions. As it is continuously updated it can
bootstrap. Its mixture model includes both foreground and background compo-
nents - it classifies values based on their mixture component, which is assigned
to the foreground or the background based on the assumption that the ma-
jority of the larger components belong to the background, with the remainder
foreground. This assumption fails if objects hang around for very long, as they
quickly dominate the distribution. The model is updated linearly using a fixed
learning rate parameter - it is not very good with the moved object problem.
Connected components converts the intermediate foreground mask into regions
via pixel adjacency, and culls all regions below a certain size, to remove spurious
detections. This approach to noise handling combined with its somewhat prim-
itive density estimation method undermines camouflage handling, as it often
thinks it is noise, and also prevents it from tracking small objects. No capac-
ity exists for it to handle illumination changes or shadows. The above can be
divided into 4 parts - the model, updating the model, how pixels are classified,
and regularisation; alternate approaches for each will now be considered in turn.

The model: Alternative DE methods exist, including different GMM implemen-
tations [7] and kernel density estimate (KDE) methods, either using Gaussian
kernels [8,9] or step kernels [10,7]. Histograms have also been used [11], and
alternatives to DE include models that predict the next value [1], use neural
networks [12], or hidden Markov models [13]. An improved background model
should result in better performance regarding dynamic background, noise and
camouflage. This is due to better handling of underfitting and/or overfitting,
which improves generalisation to the data stream. Whilst better than Stauffer &
Grimson [6] the above methods still suffer from over/under-fitting. KDE and his-
togram methods are particularly vulnerable, as they implicitly assume a constant
density by using fixed size kernels/bins. GMM methods should do better, but
the heuristics required for online learning, particularly regarding the creation of
new components, can result in local minima in the optimisation, which is just as
problematic. Our approach: We present an approach that uses a Dirichlet pro-
cess Gaussian mixture model (DP-GMM) [14] for per-pixel density estimation.
This is a non-parametric Bayesian method [15] that automatically estimates
the number of mixture components required to model the pixels background
colour distribution. Consequentially it correctly handles multi-modal dynamic
backgrounds with regular colour/luminance changes, such as trees waving in the
wind. As a fully Bayesian model over-fitting is avoided, improving robustness
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to noise and classifying pixels precisly, which helps to distinguish noise from
camouflage. He et al. [16] recently also used DP-GMMs for background subtrac-
tion, in a block-based method. They failed to leverage the potential advantages
however (Discussed below), and used computationally unmanageable methods -
despite their efforts poor results were obtained.

Model update: Most methods use a constant learning rate to update the model,
but some use adaptive heuristics [7,17], whilst others are history based [1,16],
and build a model from the last n frames directly. Adapting the learning rate
affects the moved object issue - if it is too fast then stationary objects become
part of the background too quickly, if it is too slow it takes too long to recover
from changes to the background. Adaptation aims to adjust the rate depending
on what is happening. Continuously learning the model is required to handle the
bootstrapping issue. Our approach: Using a DP-GMM allows us to introduce a
novel model update concept that lets old information degrade in a principled way.
One side effect of this and the use of Gibbs sampling is that no history has to be
kept [1,16], avoiding the need to store and process hundreds of frames. It works by
capping the confidence of the model, i.e. limiting how certain it can be about the
shape of the background distribution. This allows a stationary object to remain
part of the foreground for a very long time, as it takes a lot of information
for the new component to obtain the confidence of pre-existing components,
but when an object moves on and the background changes to a component it
has seen before, even if a while ago, it can use that component immediately.
Updating the components for gradual background changes continues to happen
quickly, making sure the model is never left behind. Confidence capping works
because non-parameteric Bayesian models, such as DP-GMMs, have a rigorous
concept of a new mixture component forming - parametric models [6,7] have to
use heuristics to simulate this, whilst KDE based approaches are not compatible
[8,9,10,7] as they lack a measure of confidence.

Pixel classification: The use of a single density estimate that includes both
foreground (fg) and background (bg), as done by Stauffer & Grimson [6] is some-
what unusual - most methods stick to separate models and apply Bayes rule [11],
with the foreground model set to be the uniform distribution as it is unknown.
Our approach: We follow this convention, which results in a probability of
being bg or fg, rather than a hard classification, which is passed through to
the regularisation step. Instead of using Bayes rule some works use a threshold
[8]. Attempts at learning a foreground model also exist [9], and some models
generate a binary classification directly [12].

Regularisation: Some approaches have no regularisation step [18], others have
information sharing between adjacent pixels [12] but no explicit regularisation.
Techniques such as eroding then dilating are common [2], and more advanced
techniques have, for instance, tried to match pixels against neighbouring pix-
els, to compensate for background motion [8]. When dealing with a probabilis-
tic fg/bg assignment probabilistic methods should be used, such as the use of
Markov random fields (MRF) by Migdal & Grimson [19] and Sheikh & Shah [9].
Our approach: We use the same method - the pixels all have a random variable
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which can take on one of two labels, fg or bg. The data term is provided by the
model whilst pairwise potentials indicate that adjacent pixels should share the
same label. Differences exist - previous works use Gibbs sampling [19] and graph
cuts [9], whilst we choose belief propagation [20], as run time can be capped;
also we use an edge preserving cost between pixels, rather than a constant cost,
which proves to be beneficial with high levels of noise. Cohen [21] has also used
a Markov random field, but to generate a background image by selecting pixels
from a sequence of frames, rather than for regularisation.

2 Methodology

2.1 Per-pixel Background Model

Each pixel has a density estimate constructed for it, to model P (x|bg) where x
is the value of the pixel. The Dirichlet process Gaussian mixture model (DP-
GMM) [14] is used. It can be viewed as the Dirichlet distribution extended to
an infinite number of components, which allows it to learn the true number of
mixtures from the data. For each pixel a stream of values arrives, one with each
frame - the model has to be continuously updated with incremental learning.

Figure 1a represents the DP-GMM graphically using the stick breaking con-
struction; it can be split into 3 columns - on the left the priors, in the middle
the entities representing the Dirichlet process (DP) and on the right the data
for which a density estimate is being constructed. This last column contains
the feature vectors (pixel colours) to which the model is being fitted, xn, which
come from all previous frames, n ∈ N . It is a generative model - each sample
comes from a specific mixture component, indexed by Zn ∈ K, which consists of
its probability of being selected, Vk and the Gaussian distribution from which
the value was drawn, ηk. The conjugate prior, consisting of µ, a Gaussian over
its mean, and Λ, a Wishart distribution over its inverse covariance matrix, is
applied to all ηk. So far this is just a mixture model; the interesting part is that
K, the set of mixture components, is infinite. Conceptually the stick breaking
construction is very simple - we have a stick of length 1, representing the entire
probability mass, which we keep breaking into two parts. Each time it is bro-
ken one of the parts becomes the probability mass for a mixture component - a
value of Vk, whilst the other is kept for the next break. This continues forever.
α is the concentration parameter, which controls how the stick is broken - a low
value puts most of the probability mass in a few mixture components, whilst a
high value spreads it out over many. Orthogonal to the stick length each stick
is associated with a draw, ηk, from the DP’s base measure, which is the already
mentioned conjugate prior over the Gaussian.

Whilst the stick breaking construction offers a clean explanation of the model
the Chinese restaurant process (CRP) is used for the implementation1. This is
the model with the middle column of Figure 1a integrated out, to give Figure 1b.

1 Variational methods [22] offer one approach to using the stick breaking construction
directly. This is impractical however as historic pixel values would need to be kept.
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Fig. 1: Two versions of the DP-GMM graphical model.

It is named by analogy. Specifically, each sample is represented by a customer,
which turns up and sits at a table in a Chinese restaurant. Tables represent
the mixture components, and a customer chooses either to sit at a table where
customers are already sitting, with probability proportional to the number of
customers at that table, or to sit at a new table, with probability proportional
to α. At each table (component) only one dish is consumed, which is chosen from
the menu (base measure) by the first customer to sit at that table. Integrating
out the draw from the DP leads to better convergence, but more importantly
replaces the infinite set of sticks with a computationally tractable finite set of
tables.

Each pixel has its own density estimate, updated with each new frame. Up-
dating proceeds by first calculating the probability of the current pixel value, x,
given the current background model, then updating the model with x, weighted
by the calculated probability - these steps will now be detailed.
Mixture components: The per-pixel model is a set of weighted mixture compo-
nents, such that the weights sum to 1, of Gaussian distributions. It is integrated
out however, using the Chinese restaurant process for the mixture weights and
the conjugate prior for the Gaussians. Whilst the literature [23] already details
this second part it is included for completeness. x ∈ [0, 1]3 represents the pix-
els colour, and independence is assumed between the components for reasons of
speed. This simplifies the Wishart prior to a gamma prior for each channel i,
such that

σ−2
i ∼ Γ

(
ni,0
2
,
σ2
i,0

2

)
, µi|σ2

i ∼ N
(
µi,0,

σ2
i

ki,0

)
, xi ∼ N (µi, σ

2
i ), (1)

where N (µ, σ2) represents the normal distribution and Γ (α, β) the gamma dis-
tribution. The parameters ni,0 and σi,0, i ∈ {0, 1, 2}, are the Λ prior from the
graphical model, whilst µi,0 and ki,0 are the µ prior.

Evidence, x, is provided incrementally, one sample at a time, which will be
weighted, w. The model is then updated from having m samples to m+1 samples
using ni,m+1 = ni,m + w, ki,m+1 = ki,m + w,

µi,m+1 =
ki,mµi,m + wxi

ki,m + w
, σ2

i,m+1 = σ2
i,m +

ki,mw

ki,m + w
(xi − µi,m)2. (2)

Note that ni,m and ki,m have the same update, so one value can be stored to cover
both, for all i. Given the above parameters, updated with the available evidence,
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a Gaussian may be drawn, to sample the probability of a colour being drawn
from this mixture component. Instead of drawing it the Gaussian is integrated
out, to give

xi ∼ T
(
ni,m, µi,m,

ki,m + 1

ki,mni,m
σ2
i,m

)
, (3)

where T (v, µ, σ2) denotes the three parameter student-t.
Background probability: To calculate the probability of a pixel, x ∈ [0, 1]3,
belonging to the background (bg) model the Chinese restaurant process is used.
The probability of x given component (table) t ∈ T is

P (x|t,bg) =
st∑
i∈T si

P (x|nt, kt, µt, σ
2
t ), (4)

P (x|nt, kt, µt, σ
2
t ) =

∏
i∈{0,1,2}

T
(
xi|nt,i, µt,i,

kt,i + 1

kt,int,i
σ2
t,i

)
, (5)

where st is the number of samples assigned to component t, and nt, µt, kt and σt
are the parameters of the prior updated with the samples currently assigned to
the component. By assuming the existence of a dummy component, t = new ∈ T ,
that represents creating a new component (sitting at a new table) with snew = α
this is the Chinese restaurant process. The student-t parameters for this dummy
component are the prior without update. Finally, the mixture components can
be summed out

P (x|bg) =
∑
t∈T

P (x|t,bg). (6)

The goal is to calculate P (bg|x), not P (x|bg), hence Bayes rule is applied,

P (bg|x) =
P (x|bg)P (zbg)

P (x|bg) + P (x|fg)
, (7)

noting that pixels can only belong to the background or the foreground (fg),
hence the denominator. P (x|bg) is given above, leaving P (bg) and P (x|fg). P (bg)
is an implicit threshold on what is considered background and what is considered
foreground, and is hence considered to be a parameter2. P (x|fg) is unknown and
hard to estimate, so the uniform distribution is used, which is a value of 1, as
the volume of the colour space is 1 (See subsection 2.3).
Model update: To update the model at each pixel the current value is as-
signed to a mixture component, which is then updated - st is increased and the
posterior for the Gaussian updated with the new evidence. Assignment is done
probabilistically, using the term for each component from Equation 4, including
the option of a new mixture component. This is equivalent to Gibbs sampling
the density estimate, except we only sample each value once on arrival. Updates
are weighted by their probability of belonging to the background (Equation 7).
Sampling each value just once is not an issue, as the continuous stream of data
means the model soon converges.

2 Though it is simply set to 0.5 for the majority of the experiments.
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A learning rate, as found in methods such as Stauffer & Grimson [6], is not
used; instead, unique to a DP-GMM, the confidence of the model is capped.
This can be interpreted as an adaptive update [7,17], but it is both principled
and very effective. In effect we are building a density estimate with the ability to
selectively forget, allowing newer data to take over when the background changes.
It works by capping how high st can go, noting that st is tied to nt and kt, so
they also need to be adjusted. When this cap is exceeded a multiplier is applied
to all st, scaling the highest st down to the cap. Note that σ2

t is dependent on kt,
as it includes kt as a multiplier - to avoid an update σ2

t /kt is stored instead. The
effectiveness is such that it can learn the initial model with less than a second
of data yet objects can remain still for many minutes before being merged into
the background, without this impeding the ability of the model to update as
the background changes. Finally, given an infinite number of frames the number
of mixture components goes to infinity, so the number is capped. When a new
component is created the existing component with the lowest st is replaced.

2.2 Probabilistic Regularisation
The per-pixel background model ignores information from a pixels neighbour-
hood, leaving it susceptible to noise and camouflage. To resolve this a Markov
random field is constructed, with a node for each pixel, connected using a 4-way
neighbourhood. It is a binary labelling problem, where each pixel either belongs
to the foreground or the background. The task is to select the most probable
solution, where the probability can be broken up into two terms. Firstly, each
pixel has a probability of belonging to the background or foreground, directly
obtained from the model as P (bg|x) and 1 − P (bg|x), respectively. Secondly,
there is a similarity term, which indicates that adjacent pixels are likely to have
the same assignment,

P (la = lb) =
h

h+m ∗ d(a, b)
, (8)

where lx is the label of pixel x, h is the half life, i.e. the distance at which the
probability becomes 0.5 and d(a, b) is the Euclidean distance between the two
pixels. m is typically 1, but is decreased if a pixel is sufficiently far from its
neighbours that none provides a P (l(a) = l(b)) value above a threshold. This
encourages a pixel to have a similar label to its neighbours, which filters out
noise. Various methods can be considered for solving this model. Graph cuts
[24] would give the MAP solution, however we use belief propagation instead
[20], as it runs in constant time given an iteration cap, which is important for a
real time implementation; it is also more amenable to a GPU implementation.

2.3 Further Details
The core details have now been given, but other pertinent details remain.
The prior: The background model includes a prior on the Gaussian associated
with each mixture component. Instead of treating this as a parameter to be set
it is calculated from the data. Specifically, the mean and standard deviation
(SD) of the prior are matched with the mean and SD of the pixels in the current
frame,
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ni,0 = ki,0 = 1, µi,0 =
1

|F |
∑
x∈F

xi, σ2
i,0 =

1

|F |
∑
x∈F

(xi − µi,0)2, (9)

where F is the set of pixels in the current frame. To change the prior between
frames the posterior parameters must not be stored directly. Instead offsets from
the prior are stored, which are then adjusted after each update such that the
model is equivalent. The purpose then is to update the distribution that mixture
components return to as they lose influence, to keep that in line with the current
lighting level.
Lighting change: The above helps by updating the prior, but it does nothing
to update the evidence. To update the evidence a multiplicative model is used,
whereby the lighting change between frames is estimated as a multiplier, then
the entire model is updated by multiplying the means, µi,m, of the components
accordingly. Light level change is estimated as in Loy et al. [25]. This takes every
pixel in the frame and divides its value by the same pixel in the previous frame,
as an estimate of the lighting change. The mode of these estimates is then found
using mean shift [26], which is robust to the many outliers.
Colour model: A simple method for filtering out shadows is to separate the
luminance and chromaticity, and then ignore the luminance, as demonstrated by
Elgammal et al. [8]. This tends to ignore too much information; instead the novel
step is taken of reducing the importance of luminance. In doing so luminance
is moved to a separate channel; due to the DE assuming independence between
components this is advantageous, as luminance variation tends to be higher than
chromatic variation. To do this a parametrised colour model is designed. First
the r, g, b colour space is rotated so luminance is on its own axis l

m
n

 =

 √
3
√

3
√

3

0
√

2 −
√

2

−2
√

6
√

6
√

6

rg
b

 , (10)

then chromaticity is extracted

l′ = 0.7176 l,

(
m′

n′

)
=

0.7176

max(l, f)

(
m
n

)
, (11)

where 0.7176 is the constant required to maintain a unit colour space volume3.
To obtain chromaticity the division should be by l rather than max(l, f), but
this results in a divide by zero. Assuming the existence of noise when measuring
r, g, b the division by l means the variance of m′ and n′ is proportional to 1

l2 . To
limit variance as well as extract chromaticity, we have two competing goals - the
use of max(l, f) introduces f , a threshold on luminance below which capping
variance takes priority. Given this colour space it is then parametrised by r,
which scales the luminance to reduce its importance against chromaticity

[l,m, n]r = [r
2
3 l′, r−

1
3m′, r−

1
3n′]. (12)

3 The post processor assumes a uniform distribution over colour, and hence needs to
know the volume. Note that this constant does not account for f , but then it makes
very little difference to the volume.
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(a) Input video frame. (b) P (bg|model) - out-
put of the DP-GMM
for each pixel.

(c) Foreground mask
generated by the pre-
sented approach.

(d) Ground truth fore-
ground mask.

Fig. 2: Frame 545 from the bootstrap sequence.

Barnich [10] KDE with a spherical kernel. Uses a stochastic history.
Collins [27] Hybrid frame differencing / background model.

Culibrk [28] Neural network variant of Gaussian KDE.
Kim [18] ’Codebook’ based; almost KDE with a cuboid kernel.
Li 1 [11] Histogram based, includes co-occurrence statistics. Lots of heuristics.
Li 2 [29] Refinement of the above.

Maddalena [12] Uses a self organising map, passes information between pixels.
Stauffer [6] Classic GMM approach. Assigns mixture components to bg/fg.
Toyama [1] History based, with region growing. Has explicit light switch detection.

Wren [30] Incremental spatio-colourmetric clustering (tracking) with change detection.
Zivkovic [7] Refinement of Stauffer [6]. Has an adaptive learning rate.

Table 1: Brief summaries of all the algorithms compared against.

The volume of the colour space has again been held at 1. Robustness to shad-
ows is obtained by setting r to a low value, as this reduces the importance of
brightness changes.

3 Experiments

Three sets of results are demonstrated - the synthetic test of Brutzer et al. [2]
and two real world tests - wallflower from Toyama et al. [1] and star from Li et
al. [29].

Brutzer et al. [2] introduced a synthetic evaluation procedure for background
subtraction algorithms, consisting of a 3D rendering of a junction, traversed by
both cars and people - see Figure 2. Despite being synthetic it simulates, fairly
accurately, 9 real world problems, and has the advantage of ground truth for all
frames. The f-measure is reported for the various approaches in Table 2, and is
defined as the harmonic mean of the recall and precision. Table 1 summarises
all the algorithms compared against during all the experiments. For this test we
used one set of parameters for all problems, rather than tuning per problem4.
As can be seen, the presented approach takes the top position for all scenarios,
being on average 27% better than its nearest competitor, and in doing so demon-
strates that it is not sensitive to the parameters chosen. The algorithm without
regularisation is also included in the chart5 - in all cases a lack of regularisation
does not undermine its significant lead over the competition, demonstrating that

4 The original paper tuned one parameter per problem - we are at a disadvantage.
5 The other algorithms on the chart have had their post-processing removed, so it can

be argued that this is the fairer comparison to make, though Brutzer et al. [2] define
post-processing such that our regularisation method is allowed.
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method basic dynamic bootstrap darkening light noisy camouflage no h.264, mean
background switch night camouflage 40kbps

Stauffer [6] .800 (3) .704 (5) .642 (5) .404 (7) .217 (6) .194 (6) .802 (4) .826 (4) .761 (6) .594 (7)
Li 1 [11] .766 (5) .641 (6) .678 (4) .704 (3) .316 (3) .047 (7) .768 (6) .803 (6) .773 (4) .611 (5)

Zivkovic [7] .768 (4) .704 (5) .632 (6) .620 (6) .300 (4) .321 (3) .820 (3) .829 (3) .748 (7) .638 (3)
Maddalena [12] .766 (5) .715 (3) .495 (7) .663 (5) .213 (7) .263 (5) .793 (5) .811 (5) .772 (5) .610 (6)

Barnich [10] .761 (6) .711 (4) .685 (3) .678 (4) .268 (5) .271 (4) .741 (7) .799 (7) .774 (3) .632 (4)

DP, no post .836 (2) .827 (2) .717 (2) .736 (2) .499 (2) .346 (2) .848 (2) .851 (2) .781 (2) .715 (2)
DP .853 (1) .853 (1) .796 (1) .861 (1) .603 (1) .788 (1) .864 (1) .867 (1) .827 (1) .812 (1)

DP, con com .855 .872 .722 .818 .500 .393 .847 .851 .838 .744
DP, rgb .850 .859 .783 .807 .445 .334 .852 .857 .848 .737

Table 2: Synthetic experimental results - f-measures for each of the 9 challenges.
The results for other algorithms were obtained from the website associated with
Brutzer et al. [2], though algorithms that never got a top score in the original
chart have been omitted. The numbers in brackets indicate which is the best,
second best etc. The mean column gives the average for all tests - the presented
approach is 27% higher than its nearest competitor.

(a) Input (b) Ground truth (c) DP (d) DP, rgb (e) DP, con com (f) DP, no post

Fig. 3: Frame 990 from the noisy night sequence.

the DP-GMM is doing most of the work, but that regularisation always improves
the score, on average by 13%. It can be noted that the largest performance gaps
between regularisation being off and being on appears for the nosiest inputs,
e.g. noisy night, light switch, darkening and h264. These are the kinds of prob-
lems encountered in surveillance applications. As a further point of comparison
DP, con com is included, where the post-processing has been swapped for the
connected components method of Stauffer & Grimson [6]. Interestingly for the
simpler problems it does very well, sometimes better than the presented method,
but when it comes to the trickier scenarios the presented is clearly better. To
justify the use of the parametrised colour model DP, rgb shows the full model
run using rgb instead of ours. The consequences are similar to those for con-
nected components. Figure 3 shows all the variants for a frame from noisy night.
It can be observed that the main advantage of the presented post processor is
its ability to go from a weak detection that falls below the implicit threshold to
a complete object, using both the colour and model uncertainty of the moving
object.

The frame shown in Figure 2 has been chosen to demonstrate two weaknesses
with the algorithm. Specifically, its robustness to shadows is not very effective
- whilst this can be improved by reducing the importance of luminance in the
colour space this has the effect of reducing its overall ability to distinguish be-
tween colours, and damages performance elsewhere. The second issue can be
seen in the small blobs at the top of the image - they are actually the reflections
of objects in the scene. Using a DP-GMM allows it to learn a very precise model,
so much so that it can detect the slight deviation caused by a reflection, when
it would be preferable to ignore it. Further processing could avoid this.

Despite its low resolution (160×120) the wallflower [1] data set is one of the
few real world options for background subtraction testing. It tests one frame only
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(a)
moved object

(b)
time of day

(c)
light switch

(d)
waving trees

(e)
camouflage

(f)
bootstrap

(g)
fg aperture

Fig. 4: Results for the wallflower dataset - on the top row is the image, on the
second row the ground truth and on the third row the output of the presented
algorithm. Toyama et al. [1] provide the outputs for other algorithms.

method moved time of light waving camouflage bootstrap foreground mean
object day switch trees aperture

Frame difference 0 (1) 1358 (12) 2565 (3) 6789 (16) 10070 (12) 2175 (4) 4354 (9) 3902 (8)

Mean + threshold 0 (1) 2593 (15) 16232 (11) 3285 (13) 1832 (3) 3236 (9) 2818 (5) 4285 (9)

Mixture of Gaussians 0 (1) 1028 (10) 15802 (8) 1664 (8) 3496 (6) 2091 (3) 2972 (6) 3865 (7)

Block correlation 1200 (11) 1165 (11) 3802 (4) 3771 (15) 6670 (11) 2673 (8) 2402 (4) 3098 (5)

Eigen-background 1065 (10) 895 (7) 1324 (2) 3084 (12) 1898 (4) 6433 (11) 2978 (7) 2525 (3)

Toyama [1] 0 (1) 986 (8) 1322 (1) 2876 (11) 2935 (5) 2390 (6) 969 (1) 1640 (2)

Maddalena [12] 453 (2) 293 (3)

Wren [30] 654 (6) 298 (4)

Collins [27] 653 (5) 430 (6)

Kim [18] 492 (3) 353 (5)

DP 0 (1) 596 (4) 15071 (6) 265 (2) 1735 (2) 1497 (2) 1673 (3) 2977 (4)

DP, tuned 0 (1) 330 (1) 3945 (5) 184 (1) 384 (1) 1236 (1) 1569 (2) 1093 (1)

Table 3: Results for the wallflower dataset [1], given as the number of pixels
that have been assigned the wrong class. Again, weaker algorithms have been
culled from the original, though the positions continue to account for the missing
methods. On average the presented approach makes 33% less mistakes than its
nearest competitor.

for each problem, by counting the number of mistakes made6; testing on a single
frame is hardly ideal. There are seven tests, given in Figure 4 for a qualitative
evaluation. Quantitative results are given in Table 3. Previously published results
have been tuned for each problem, so we do the same in the DP, tuned row, but
results using a single set of parameters are again shown, in the DP row, to
demonstrate its high degree of robustness to parameter selection. For 5 of the 7
tests the method takes 1st, albeit shared for the moved object problem.

On foreground aperture it takes 2nd, beaten by the Toyama [1] algorithm.
This shot consists of a sleeping person waking up, at which point they are ex-
pected to transition from background to foreground. They are wearing black
and do not entirely move from their resting spot, so the algorithm continues to
think they are background in that area. The regularisation helps to shrink this
spot, but the area remains. It fails with the light switch test, which is interesting

6 For the purpose of comparison the error metrics used by previous papers [1] have
been used.



12 Tom SF Haines and Tao Xiang

(a) cam (b) ft (c) ws (d) mr (e) lb (f) sc (g) ap (h) br (i) ss

Fig. 5: Results for the star dataset - with the same frames as Culibrk et al. [28]
and Maddalena & Petrosino [12], for a qualitative comparison. Layout is identical
to Figure 4. The videos are named using abbreviations of their locations.

method cam ft ws mr lb sc ap br ss mean

Li 2 [29] .1596 (5) .0999 (6) .0667 (6) .1841 (6) .1554 (6) .5209 (6) .1135 (6) .3079 (6) .1294 (6) .1930 (6)
Stauffer [6] .0757 (6) .6854 (3) .7948 (4) .7580 (4) .6519 (2) .5363 (5) .3335 (5) .3838 (5) .1388 (5) .4842 (5)
Culibrk [28] .5256 (4) .4636 (5) .7540 (5) .7368 (5) .6276 (4) .5696 (4) .3923 (4) .4779 (4) .4928 (4) .5600 (4)

Maddalena [12] .6960 (3) .6554 (4) .8247 (3) .8178 (3) .6489 (3) .6677 (2) .5943 (1) .6019 (3) .5770 (1) .6760 (2)

DP .7567 (2) .7049 (2) .9090 (2) .8203 (2) .5794 (5) .6522 (3) .5484 (3) .6024 (2) .5055 (3) .6754 (3)
DP, tuned .7624 (1) .7265 (1) .9134 (1) .8371 (1) .6665 (1) .6721 (1) .5663 (2) .6273 (1) .5269 (2) .6998 (1)

Table 4: Results for the star dataset [29,12]; refer to Figure 5 for exemplar
frames, noting that lb has abrupt lighting changes. The average improvement of
DP, tuned over its nearest competitor is 4%.

as no issue occurs with the synthetic equivalent. For the presented approach
lighting correction consists of estimating a single multiplicative constant - this
works outdoors where it is a reasonable model of the sun, but indoors where
light bounces around and has a highly non-linear effect on the scene it fails. It
is therefore not surprising that the synthetic approach, which simulates a sun,
works, whilst the indoor approach, which includes light coming through a door
and the glow from a computer monitor, fails. Examining the output in Figure 4

it can be noted that it has not failed entirely - the test frame is only the 13th

frame after the light has been switched on, and the algorithm is still updating
its model after the change.

Finally, the star evaluation [29] is presented, which is very similar to the
wallflower set - a video sequence is shared. The sequences are generally much
harder though, due to text overlays, systemic noise and some camera shake, and
fewer algorithms have been run on this set. It has a better testing procedure, as it
provides multiple test frames per problem, with performance measured using the
average similarity score for all test frames, where similarity = tp/(tp + fn + fp).

The presented approach7 takes 1st 7 times out of 9, beaten twice by Maddalena
et al. [12]. Its two weak results can probably be attributed to camera shake,
as the presented has no robustness to shaking, whilst Maddalena et al. [12]
does, due to model sharing between adjacent pixels. The light switch test in this
data set does not trip it up this time - the library where it occurs has a high
ceiling and diffuse lighting, making multiplicative lighting much more reasonable.

7 As for wallflower we tune per-problem, as the competition has done the same; results
for a single set of parameters are again presented.
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Complex dynamic backgrounds clearly demonstrate the strength of a DP-GMM,
as evidenced by its 3 largest improvements (cam, ft and ws).

Using a DP-GMM is computationally demanding - the implementation ob-
tains 25 frames per second with 160 × 120, and is O(n) where n = wh is the
number of pixels8. This is not a major concern, as real time performance on high
resolution input could be obtained using a massively parallel GPU implementa-
tion. Indeed, an incomplete effort at this has already increased the speed by a
factor of 5, making 320× 240 real time.

4 Conclusions

This work represents the cutting edge background subtraction method9. It takes
the basic concept of the seminal work of Stauffer & Grimson [6] and applies up
to date methods in a mathematically rigorous way. The key advantage is in using
DP-GMMs, which handle new mixture components forming as more information
becomes available, and build highly discriminative models. Using a confidence
cap handles the dynamics of a scene much better than a heuristic approach to
model updates. Despite its thorough theoretical basis implementation remains
relatively simple10. Certain improvements can be considered. Combining infor-
mation between pixels only as a regularisation step does not fully exploit the
information available, and so a rigorous method of spatial information transmis-
sion would be desirable. This would be particularly helpful when handling mild
camera shake. Sudden complex lighting changes are not handled, which means
it fails to handle some indoor lighting changes.
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