Active Learning using Dirichlet Processes for

 Rare Class Discovery and ClassificationTom S. F. Haines \& Tao Xiang
\{thaines,txiang\}@eecs.qmul.ac.uk

Queen Mary, University of London
$30^{\text {th }}$ August 2011

Roadmap

(1) The Problem
(2) Our Solution I
(3) Dirichlet Processes
(4) Our Solution II
(5) Results
(6) Conclusions

Note that code can be obtained from thaines.com

Active Learning

- Training a classifier consists of collecting data, then labelling the data and, finally, fitting a model.
- Data collection can often be automated, and model fitting is a problem of computation... labelling however typically requires human interaction, and is hence expensive.
- Active learning endeavours to minimise this expense. It orders the training exemplars to get as much performance as possible with the least effort.
- When to stop training is usually left to the user.

Discovery \& Classification

- Discovery is when not all classes are known, and need to be found.
- Classification is where the classes are considered to be known but the boundaries between them need to be refined.
- Active learning is typically used to solve one of these problems at a time.
- Here we present an approach that tackles both problems simultaneously, with the express purpose of maximising classification performance.

Scenario

- We have a pool of items with which to train a classifier.
- The task of the active learner is to, given the current classifier, select the best item to be labelled by the oracle.
- After each item has had a label supplied the classifier is updated with the new information (It helps if an incremental learning method is used.).

Assumptions

- Assumption 1: That the item with the greatest probability of being misclassified should be selected.
- Assumption 2: That the classes have been drawn from a Dirichlet process. This is equivalent to assuming the items in the pool come from a Dirichlet process mixture model.
- An infinite number of classes to which entities may belong.
- Classifier is Bayesian, but this can be ignored with a pseudo-prior.

The Algorithm

Class assignment that the classifier, which cannot consider new classes, gives:

$$
\mathrm{cc}=\underset{c \in C}{\operatorname{argmax}} P_{c}(c \mid \text { data })
$$

Class assignment probability, including the possibility of a new class:

Probability of misclassification:

$$
P(\text { wrong } \mid \text { data })=1-P_{n}(\mathrm{cc} \mid \text { data })
$$

Infinite Dirichlet Distribution

$$
x \sim M(X), \quad X \sim D(\alpha, H), \quad x \in H
$$

Finite Case	Infinite Case
$D=$ Dirichlet distribution.	$D=$ Dirichlet process.
$X=$ Finite length vector, sum	$X=$ Infinite length vector, sum
of all entries is 1.	of all entries is 1.
$M=$ Multinomial distribution.	$M=$ Infinite multinomial.
$X=$ Individual atom.	$x=$ Individual atom.
$H=$ Set of arbitrary atoms, of	$H=$ Base measure, a from
size n.	which atoms can be drawn. Of-
	ten a standard distribution
$\alpha \in \mathbb{R}^{n}=$ Parameter for the	$\alpha \in \mathbb{R}=$ The concentration pa-
Dirichlet distribution.	rameter.

Stick Breaking Construction

$$
\text { Remaining Stick } \rightarrow \widetilde{I_{0}=1}
$$

Base Measure \rightarrow

Stick Breaking Construction

$$
\text { Remaining Stick } \rightarrow \widetilde{\iota_{1}=v_{1}}
$$

$$
\begin{aligned}
& v_{1} \sim \operatorname{beta}(1, \alpha) \\
& \beta_{1}=1-v_{1}
\end{aligned}
$$

Stick Breaking Construction

Remaining Stick \rightarrow

$$
I_{2}=v_{1} v_{2}
$$

$$
\begin{array}{ll}
v_{1} \sim \operatorname{beta}(1, \alpha) & v_{2} \sim \operatorname{beta}(1, \alpha) \\
\beta_{1}=1-v_{1} & \beta_{2}=v_{1}\left(1-v_{2}\right)
\end{array}
$$

Stick Breaking Construction

$$
\text { Remaining Stick } \rightarrow \quad-\quad I_{3}=v_{1} v_{2} v_{3}
$$

$$
\begin{array}{lll}
v_{1} \sim \operatorname{beta}(1, \alpha) & v_{2} \sim \operatorname{beta}(1, \alpha) & v_{3} \sim \operatorname{beta}(1, \alpha) \\
\beta_{1}=1-v_{1} & \beta_{2}=v_{1}\left(1-v_{2}\right) & \beta_{3}=v_{1} v_{2}\left(1-v_{3}\right)
\end{array}
$$

Base Measure \rightarrow

Stick Breaking Construction

$$
\begin{array}{ll}
\text { Remaining Stick } \rightarrow \quad- \\
I_{n}=\prod_{i=1}^{n} v_{i}
\end{array}
$$

Chinese Restaurant Process

$\frac{\alpha}{\alpha}$

- Is $P(x \mid \alpha, H)=\int x \sim M(X), X \sim D(\alpha, H) d X$
- Customer enters the restaurant, has to choose where to sit.

Chinese Restaurant Process

- An infinite number of tables are actually available, but as empty tables are equivalent the choice is meaningless.
- When sitting at an empty table a draw from the base measure (menu) is made - all customers at that table are then associated with that draw.

Chinese Restaurant Process

- Tables are weighted by the number of customers sitting at them.

Chinese Restaurant Process

$\frac{\alpha}{\alpha+2}$

$\frac{1}{\alpha+2}$

$\frac{1}{\alpha+2}$

Chinese Restaurant Process

$\frac{\alpha}{\alpha+3}$

$\frac{2}{\alpha+3}$

$$
\frac{1}{\alpha+3}
$$

- Two people have sat at one of the tables - the same value has been drawn from the distribution twice.
- Consequentially, a continuous base distribution has been converted into a discrete distribution.

Chinese Restaurant Process

$\frac{\alpha}{\alpha+4}$

$\frac{3}{\alpha+4}$

$\frac{1}{\alpha+4}$

Chinese Restaurant Process

$\frac{\alpha}{\alpha+5}$

$\frac{2}{\alpha+5}$

- The rich get richer - a table with lots of customers will attract more customers.

Chinese Restaurant Process

$\frac{\alpha}{\alpha+6}$

$\frac{1}{\alpha+6}$

$\frac{3}{\alpha+6}$

$\frac{2}{\alpha+6}$

Chinese Restaurant Process

$\frac{\alpha}{\alpha+7}$

$\frac{4}{\alpha+7}$

$\frac{2}{\alpha+7}$

Chinese Restaurant Process

$\frac{\alpha}{\alpha+8}$

$\frac{4}{\alpha+8}$

$$
\frac{2}{\alpha+8}
$$

Chinese Restaurant Process

$$
\frac{\alpha}{\alpha+\sum_{i=1}^{n} m_{i}}
$$

$$
\frac{m_{2}}{\alpha+\sum_{i=1}^{n} m_{i}}
$$

$$
\frac{m_{1}}{\alpha+\sum_{i=1}^{n} m_{i}}
$$

- m_{i} - The number of customers at table i.
- Whilst only four tables are shown the process goes on forever, leading to an infinite number of occupied tables.

The Algorithm, again

Class assignment probability, including the possibility of a new class:

Concentration parameter (α) needs to be estimated - use the Gibbs sampling method from Escobar \& West '95.

Final entity selection is done probabilistically, using P (wrong) as a weighting.

Demonstration

- Use Fisher iris (orchid) classification problem from 1936, reduced to 1D via PCA.

Demonstration

- Use Fisher iris (orchid) classification problem from 1936, reduced to 1D via PCA.

1 query:

Demonstration

- Use Fisher iris (orchid) classification problem from 1936, reduced to 1D via PCA.

1 query:

2 queries:

Demonstration

- Use Fisher iris (orchid) classification problem from 1936, reduced to 1D via PCA.

1 query:

2 queries:

3 queries:

Demonstration

- Use Fisher iris (orchid) classification problem from 1936, reduced to 1D via PCA.

1 query:

3 queries:

2 queries:

5 queries:

Demonstration

- Use Fisher iris (orchid) classification problem from 1936, reduced to 1D via PCA.

1 query:

3 queries:

12 queries:

2 queries:

5 queries:

Demonstration (Bonus slide)

(First 32 queries, in reading order.)

Shuttle

- Standard dataset from the UCI repository - included to compare with other algorithms.
- Seven classes; 78\% of exemplars are in the largest class, 0.01% in the smallest.

	shuttle	
	discovery	Classification
random	486.2	53.5
entropy	423.5	51.8
likelihood	950.5	79.4
Pelleg	534.0	
He	768.5	
Vatturi	970.5	61.8
Hospedales	933.2	79.8
P (wrong)	923.4	

- - - - random
$-\cdots-\cdots-$ entropy
-.---- likelihood
.................... Pelleg
..................... He
.................. Vatturi
\cdots................. Hospedalles
—— P(wrong)

Gait

- Gait problem - recognising one of nine camera angles from a gait energy image. Geometric progression for sample sizes.

	gait	
	discovery	Classification
random	1170.5	78.9
entropy	1183.8	75.3
likelihood	1171.7	56.5
Hospedales	1253.1	84.8
P (wrong)	1241.9	88.4

$$
\begin{array}{ll}
-\cdots-\cdots & \text { random } \\
-\cdots-\cdots- & \text { entropy } \\
----- & \text { likelihood } \\
\hdashline-\quad \text { Hospedalles } \\
\hline \quad \text { P(wrong) }
\end{array}
$$

Digits

- Digits problem: Recognising the ten handwritten digits.

	digits	
	discovery	Classification
random	915.2	54.6
entropy	974.0	57.1
likelihood	1060.2	61.9
Hospedales	1207.4	69.5
P (wrong)	1133.6	69.7

-… \cdots random
-.--.-- entropy
------ likelihood
Hospedalles
—— P(wrong)

Interest in Finding New Classes

- Plots of the interest in finding a new class versus the number of queries.
- Glitch in graph due to concentration (α) estimation method requiring at least two classes.

Conclusions

- Simple to implement.
- Reasonable results.
- Minimal, if any, effort required for parameter tuning.
- Basic concept with many possible specialisations/improvements.
- It assumes a logarithmic relationship between \# of classes and \# of exemplars.
- Arguably better, if more complex, selection methods exist than the probability of misclassification.

The End

Questions?

