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Active Learning

• Training a classifier consists of collecting data, then
labelling the data and, finally, fitting a model.

• Data collection can often be automated, and model fitting is
a problem of computation... labelling however typically
requires human interaction, and is hence expensive.

• Active learning endeavours to minimise this expense. It orders
the training exemplars to get as much performance as possible
with the least effort.

• When to stop training is usually left to the user.



Discovery & Classification

• Discovery is when not all classes are known, and need to be
found.

• Classification is where the classes are considered to be known
but the boundaries between them need to be refined.

• Active learning is typically used to solve one of these problems
at a time.

• Here we present an approach that tackles both problems
simultaneously, with the express purpose of maximising
classification performance.



Scenario

• We have a pool of items with which to train a classifier.

• The task of the active learner is to, given the current
classifier, select the best item to be labelled by the oracle.

• After each item has had a label supplied the classifier is
updated with the new information (It helps if an incremental
learning method is used.).



Assumptions

• Assumption 1: That the item with the greatest probability of
being misclassified should be selected.

• Assumption 2: That the classes have been drawn from a
Dirichlet process. This is equivalent to assuming the items
in the pool come from a Dirichlet process mixture model.

• An infinite number of classes to which entities may belong.

• Classifier is Bayesian, but this can be ignored with a
pseudo-prior.



The Algorithm

Class assignment that the classifier, which cannot consider new
classes, gives:

cc = argmax
c∈C

Pc(c |data)

Class assignment probability, including the possibility of a new
class:

Pn(c ∈ C ∪ {new}|data) ∝

{ mc∑
k∈C mk+αPc(data|c) if c ∈ C

α∑
k∈C mk+αP(data) if c = new

Probability of misclassification:

P(wrong|data) = 1− Pn(cc|data)



Infinite Dirichlet Distribution

x ∼ M(X ), X ∼ D(α,H), x ∈ H

Finite Case Infinite Case

D = Dirichlet distribution. D = Dirichlet process.
X = Finite length vector, sum
of all entries is 1.

X = Infinite length vector, sum
of all entries is 1.

M = Multinomial distribution. M = Infinite multinomial.
x = Individual atom. x = Individual atom.
H = Set of arbitrary atoms, of
size n.

H = Base measure, a from
which atoms can be drawn. Of-
ten a standard distribution

α ∈ Rn = Parameter for the
Dirichlet distribution.

α ∈ R = The concentration pa-
rameter.



Stick Breaking Construction

Remaining Stick→
l0 = 1

v1 ∼ beta(1, α)

β1 = 1− v1

v2 ∼ beta(1, α)

β2 = v1(1− v2)

v3 ∼ beta(1, α)

β3 = v1v2(1− v3)

. . .
vn ∼ beta(1, α)

βn =
∏i−1

i=1 vi (1− vn)

. . .

Base Measure→
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Stick Breaking Construction

Remaining Stick→
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Chinese Restaurant Process

α
α

• Is P(x |α,H) =
∫

x ∼ M(X ),X ∼ D(α,H)dX

• Customer enters the restaurant, has to choose
where to sit.



Chinese Restaurant Process

• An infinite number of tables are actually available,
but as empty tables are equivalent the choice is
meaningless.

• When sitting at an empty table a draw from the
base measure (menu) is made - all customers at
that table are then associated with that draw.



Chinese Restaurant Process

α
α+1

1
α+1

• Tables are weighted by the number of customers
sitting at them.



Chinese Restaurant Process
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Chinese Restaurant Process

α
α+3
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α+3

1
α+3

• Two people have sat at one of the tables - the
same value has been drawn from the distribution
twice.

• Consequentially, a continuous base distribution has
been converted into a discrete distribution.



Chinese Restaurant Process
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Chinese Restaurant Process
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• The rich get richer - a table with lots of customers
will attract more customers.



Chinese Restaurant Process
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Chinese Restaurant Process
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Chinese Restaurant Process
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Chinese Restaurant Process

α
α+

∑n
i=1 mi

m3
α+

∑n
i=1 mi

m2
α+

∑n
i=1 mi

m1
α+

∑n
i=1 mi

• mi - The number of customers at table i .

• Whilst only four tables are shown the process goes
on forever, leading to an infinite number of
occupied tables.



The Algorithm, again

Class assignment probability, including the possibility of a new
class:

Pn(c ∈ C ∪ {new}|data) ∝

{ mc∑
k∈C mk+αPc(data|c) if c ∈ C

α∑
k∈C mk+αP(data) if c = new

Concentration parameter (α) needs to be estimated - use the
Gibbs sampling method from Escobar & West ’95.

Final entity selection is done probabilistically, using P(wrong) as a
weighting.



Demonstration

• Use Fisher iris (orchid) classification problem from 1936,
reduced to 1D via PCA.

1 query: 2 queries:

3 queries: 5 queries:

12 queries:
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Demonstration (Bonus slide)

(First 32 queries, in reading order.)



Shuttle

• Standard dataset from the UCI repository - included to
compare with other algorithms.

• Seven classes; 78% of exemplars are in the largest class,
0.01% in the smallest.
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Gait

• Gait problem - recognising one of nine camera angles from a
gait energy image. Geometric progression for sample sizes.
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Digits

• Digits problem: Recognising the ten handwritten digits.
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Interest in Finding New Classes

• Plots of the interest in finding a new class versus the number
of queries.

• Glitch in graph due to concentration (α) estimation method
requiring at least two classes.
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Conclusions

• Simple to implement.

• Reasonable results.

• Minimal, if any, effort required for parameter tuning.

• Basic concept with many possible
specialisations/improvements.

• It assumes a logarithmic relationship between # of classes and
# of exemplars.

• Arguably better, if more complex, selection methods exist
than the probability of misclassification.



The End

Questions?
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